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Introduction

This is an update of what I began in 1996 and is posted with the ICS Mathematical Pro-
gramming Glossary [3]. I follow the terms and notation in the Glossary , presenting examples
in Linear Programming (LP), Integer Programming (IP), Dynamic Programming (DP), Non-
linear Programming (NLP), as well as Multiple-Objective (MOP) and Special Forms (SF).
These comprise the sections that follow, but they are not a partition of mathematical pro-
gramming in general. Many problems overlap; for example, a problem could be represented
as an LP and a DP. Further, network problems are scattered in all of these. I placed an entry
where I thought it should go for what we teach. Thus, most network problems are in the
LP section, and a dynamic problem is in DP only if dynamic programming is the underlying
methodology, not just that the model is dynamic.

The use of counterexamples to disprove some result that seems as though it is true is an
old technique to deepen our understanding of the underlying concepts. One of the most
impressive books I read in graduate school was Counterexamples in Analysis [1], by Gelbaum
and Olmsted. Since then, similar books have appeared[2, 4, 5, 6, 7, 8]. Pedagogically, one could
put a theorem out to the students of the form: P →Q, then list some counterexamples to
Q. The goal is for the student to discover P that makes Q true. What are the properties of
the pathologies? Some myths are counterexamples to previously-published claims. Although
that renders the original claim obsolete (unless repaired), it is included to demonstrate the
construction of a counterexample in what appeared to be a valid result, not only to the author
but also to at least two referees and one editor. What property did they all miss, and where
does it present a �aw in the �proof?�

However, the myths and counterexamples I present here are not restricted to mathematical
constructs. I have also included some practices that have grown in the folklore to dispel myths
about �good� models, solutions, and computational e�ciency. One class of myth to challenge
our intuition is that the objective value cannot worsen when we improve resources and/or
relax constraints. I list these as better is worse in the index. A related type of myth is more
for less.

I use fairly standard notation for mathematical objects (though they have no universal stan-
dard), some of which are shown in Table 1.

Table 1: Notation

(a, b) open interval {x : a < x < b}

[a, b] closed interval {x : a ≤ x ≤ b}

� set of real values (−∞,∞)

� set of integer values {. . . ,−2,−1, 0, 1, 2, . . . }

� set of rational values
{
p
q : p, q ∈ � : q > 0

}
I use �+,�+,�+ to restrict the values to be non-negative. For example, �+ = [0,∞). I use
�n,�n,�n to denote n-vectors whose coordinates belong to the indicated set. For example,
�n = {x = (x1, . . . , xn) : xj ∈ � for j = 1, . . . , n}. These can be combined. For example,
�n+ = {x ∈ �n+ : xj ∈ � for j = 1, . . . , n}.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]
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Following the Glossary notation, the general form of a mathematical program is given by:

min f(x) : x ∈ X, g(x) ≥ 0, h(x) = 0,

where ∅ 6= X ⊆ �n, f : X→�, g : X→�m, h : X→�M . (The sense of optimization could
be max.) The functional relations are called constraints.

I welcome suggestions for future versions.

General References

[1] B. R. Gelbaum and J. M. H. Olmsted. Counterexamples in Analysis. Holden-Day, San Francisco,
CA, 1964.

[2] B. R. Gelbaum and J. M. H. Olmsted. Theorems and Counterexamples in Mathematics. Springer-
Verlag, New York, NY, 1990.

[3] A. Holder, editor. Mathematical Programming Glossary. INFORMS Computing Society, http:
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Press, New York, NY, 1993.

Linear Programming

The general form of a linear program (LP) is the optimization of a linear function subject to
a system of linear equations and inequalities. The standard form is

min cx : Ax = b, x ≥ 0,

where rank(A) = m = number of equations. This form is particularly useful when considering
the simplex method.

When talking about duality, I use the canonical form:

min cx : Ax ≥ b, x ≥ 0.

(No rank condition on A.) This renders the dual prices non-negative, giving the dual canonical
form:

max πb : πA ≤ c, π ≥ 0.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]
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Unless stated otherwise, or implied from context, the LP in question could be any linear
system; it need not be in standard or canonical form.

The standard simplex method is the original pivot-selection rule by Dantzig, applied to the
standard form � a variable with the greatest reduced cost (rate of improvement) is chosen
to enter the basis. An alternative is the best-gain criterion, which evaluates the actual gain
of each candidate to enter the basis by computing its change in level and multiplying by the
rate of improvement.

A constraint is redundant if its removal does not change the set of feasible points. An in-
equality is an implied equality if it must hold with equality in every feasible solution.

LP Myth 1. All redundant constraints can be removed.

The reason this is incorrect is that once a redundancy is removed, the other constraints may
no longer be redundant.

Counterexample. x, y ≥ 0 and x−y = 0. Each non-negativity constraint is redundant, but
they cannot both be removed. The redundancy of x ≥ 0 follows from the equation and
the non-negativity of y: x = y ≥ 0.

Practical use was �rst reported by Tomlin and Welch[51], and that led to a theory of common
dependency sets by Greenberg[29].

LP Myth 2. A degenerate basis implies there is a (weakly) redundant constraint.

Counterexample. Consider y ≥ 0, x ≥ 1, x+y ≤ 1. The only feasible point is (x, y) = (1, 0)
with slack and surplus variables both 0. Thus, each of the possible feasible bases is
degenerate, but no constraint is redundant.

Sierksma and Tijssen[46] generalized this: If a face of dimension n− 1 or n− 2 is degenerate,
the de�ning linear inequalities are not minimal � that is, the system must contain either a
redundant inequality or an implied equality. Note the special conditions on dimension. For
n ≥ 3, it cannot apply generally to an extreme point (face of 0 dimension). A pyramid is
a counterexample for n = 3. The pyramid's top extreme point is degenerate because it is
the intersection of 4 planes, but none of the de�ning inequalities is redundant or an implied
equality.

LP Myth 3. If an LP has an optimal solution, there is an extreme point of the feasible
region that is optimal.

Counterexample. Arsham[2, #rlpnov] provides the following: maxx1 +x2 : x1 +x2 ≤ 5. The
feasible set is a polyhedron with no extreme point. This occurs because we do not require
the variables to be non-negative.

The myth is true when the LP is in standard form. Converting the example to standard form
increases the dimension:

maxu1 − v1 + u2 − v2 :
u1 − v1 + u2 − v2 + x3 = 5,

u1, v1, u2, v2, x3 ≥ 0,

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]
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where we have augmented the slack variable, x3, and we have partitioned each of the original
variables into their positive and negative parts:

x1 = u1 − v1 and x2 = u2 − v2.

(Be sure to see LP Myth 7.)

In this higher-dimensional space, it is true that an extreme point is optimal � in particular,
(u1, v1, u2, v2, x3) = (5, 0, 0, 0, 0). In fact, there are three extreme points; the other two are
(0,0,5,0,0) and (0,0,0,0,5). Each of these three extreme points is optimal for some objective
value coe�cients, spanning all that render the LP optimal (vs. unbounded).

LP Myth 4. If one knows that an inequality constraint must hold with equality in every
optimal solution, it is better to use the equality in the constraint because it will reduce the
solution time.

First, it is not necessarily the case that it will reduce the solution time � the solver could
get a �rst feasible solution faster with the inequality formulation. Second, even if the tighter
version solves faster (perhaps by pre-solve reduction), it is generally better to let the model tell
you the answer than for you to wire the result. Your intuition could be wrong, or there could
be a data entry error that goes undetected with the equality constraint. A better approach is
to attach a back-end report to examine all things �known� to be true and �ag the violations.
Thus, if an inequality is slack and you expected it to be tight, you can investigate why the
model did what it did.

LP Myth 5. In a dynamic LP, each period should be the same duration.

This is tacitly implied in many textbook examples. The reality is that we know more about
what is likely to happen tomorrow than next year. In general, data can provide forecasts for
demands, supplies, and other model parameters, but the accuracy tends to be less as the time
is further into the future. One may have, for example, a 5-year planning model with the �rst
12 time periods being months, the next 4 periods being quarters, and the last 3 being years.

LP Myth 6. If the optimal value of a slack variable is zero, the associated constraint is
binding.

As suggested by H. P. Williams, this myth re�ects confusion in terminology. An inequality
constraint is active at a point if it holds with equality; it is binding if its removal changes the
solution.

Counterexample. max x1 : x ≥ 0, x1 + 2x2 ≤ 3, 2x1 + x2 ≤ 3, x1 + x2 ≤ 2.

The (unique) optimal solution is at x∗ = (1, 1), and all slack variables are zero. However,
the last constraint is not binding; it is redundant.

LP Myth 7. It is a good idea to convert free variables to the standard form by the expression:
x = u− v, where u is the positive part and v is the negative part of x.
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Too often students (and new graduates) do this, perhaps thinking it is necessary due to the
text they used. However, all solvers handle free variables directly.

For a simplex method, the conversion requires a change in basis whenever x needs to change
sign. This is an unnecessary pivot, wasting time and space. Recognition of free variables
allows the solver to put all free variables into the basis at the start (dealing with linear
dependence, if that should be a problem). Once in the basis, a free variable cannot block an
entrant, so it simply stays there. Some solvers also use the free variable to eliminate a row
(and restore it after a solution is obtained). Thus, it is never a good idea to perform this
conversion when using a simplex method.

For an interior method, this causes the optimality region to be unbounded (if it is not empty).
Whatever the value of x∗, there is an in�nite number of values of u∗ and v∗ that yield the
same di�erence, u∗− v∗. During the iterations, it is not unusual for u and v to diverge, while
maintaining a constant di�erence, and this divergence can cause numerical problems for the
algorithm (especially for convergence detection).

LP Myth 8. The standard simplex method does not select a dominated column to enter the
basis.

Consider LP in canonical form:

max cx : x ≥ 0, Ax ≤ b.

A column, j, is dominated if there exists k 6= j such that

ck ≥ cj and Ak ≤ Aj .

Counterexample. Blair[10] provides the following:

max 5x1 + 3x2 + x3 + x4

x1 − x2 + 5x3 + 3x4 ≤ 10
3x1 + x2 + x3 + x4 ≤ 40
−2x1 + x2 − 3x3 − 3x4 ≤ 10

x ≥ 0.

After adding slack variables to convert to standard form, the �rst simplex tableau is:

Level x1 x2 x3 x4 s1 s2 s3
← 10 1 −1 5 3 1 0 0

40 3 1 1 1 0 1 0
10 −2 1 3 3 0 0 1
0 5 3 1 1 0 0 0

↑

The �rst pivot exchange is s1 ← x1:

Level x1 x2 x3 x4 s1 s2 s3
10 1 −1 5 3 1 0 0

← 10 0 4 −14 −8 −3 1 0
30 0 −1 13 9 2 0 1
50 0 8 −24 −14 −5 0 0

↑
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Column 3 is dominated by column 4, but it enters the basis next:

Level x1 x2 x3 x4 s1 s2 s3

12 1
2

1 0 1 1
2

1 1
4

1
4

0
2 1

2
0 1 −3 1

2
−2 − 3

4
1
4

0
32 1

2
0 0 9 1

2
7 1 1

4
1
4

1
69 0 0 4 2 1 −2 0

↑

One way to look at Blair's example is that the dominance conditions are not generally pre-
served as the basis changes. This is evidenced by [B−1A4]2 = −2 6< −3 1

2
= [B−1A3]2.

Another view is to drop the �rst two columns entirely
and consider a 2-variable LP with an initial basis that
is slack. The values of A do not a�ect the selection of
the basis entrant. With equal reduced costs, the �rst
variable, which is dominated.

Level x3 x4 s1 s2 s3
10 5 3 1 0 0
40 1 1 0 1 0
10 3 3 0 0 1
0 1 1 0 0 0

↑

LP Myth 9. new At optimality, π∗b = cx∗ � that is, the inner product of the optimal dual
variables on the constraints and the right-hand side values equals the optimal primal objective
value.

While this is true for standard and canonical forms, it fails when primal bounds are handled
directly. Consider the primal-dual LPs:

Primal

min cx : 0 ≤ x ≤ U, Ax ≥ b.

Dual

max πb− µU : π, µ ≥ 0, πA− µ ≤ c.

At optimality, cx∗ = π∗b− µ∗U , so one must be careful to subtract µ∗U from π∗b to obtain
the correct equation.

Support for handling bounds directly, rather than including them in other constraints, is an
example of how optimization software may use di�erent conventions than in the theory. Such
deviations from theory in the world of optimization software include reporting dual prices
and/or reduced costs as the negative of their theoretically-correct values. One must check
the manual or run a small test case to see how they are reported in any particular solver.
(ANALYZE[27] reports theoretically-correct values, changing solver-values as needed.)

LP Myth 10. Once the simplex method reaches an optimal vertex, it terminates.

The fallacy is that the Basic Feasible Solution (BFS) reached must be both primal and dual
optimal for the tableau to be terminal.
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Counterexample. Gerard Sierksma provided the following (converted to standard form):

max x1 + x2 : x, s ≥ 0
x1 + s1 = 1

+ x2 + s2 = 1
x1 + x2 − s3 = 2

The extreme point (1, 1) is optimal and corresponds to three BFSs:

basic level s2 s3
x1 1 −1 −1
x2 1 1 0
s1 0 1 1
−z 2 0 1

↑

basic level s1 s3
x1 1 1 0
x2 1 −1 −1
s2 0 1 1
−z 2 0 1

↑

basic level s1 s2
x1 1 1 0
x2 1 0 1
s3 0 1 1
−z 2 −1 −1

Terminal

Only the third of these is both primal and dual optimal; the other two are not terminal.
The reason is the myopic nature of rates, oblivious to the degeneracy:

Tableau 1
∆x1 = ∆s3
∆x2 = 0
∆s1 = −∆s3
∆z = ∆s3

Tableau 2
∆x1 = 0
∆x2 = ∆s3
∆s2 = −∆s3
∆z = ∆s3

Tableau 3
∆x1 = −∆s1
∆x2 = −∆s2
∆s3 = −∆s1 −∆s2
∆z = −∆s1 −∆s2

Tableau 1 sees a rate of change in the objective value as +1 per unit of increase in s3
(keeping s2 = 0). The linear equations show that the net rate of change in the objective
value (z) is +1, which is its reduced cost. Similarly, tableau 2 sees a rate of change in the
objective value as +1 per unit of increase in s3 (keeping s1 = 0). The linear equations
show that the net rate of change in the objective value (z) is +1, which is its reduced cost.
The third tableau has s3 in the basis, so it responds to changes in either of the �rst two
slack variables. Any increase in one slack value causes a decreases in its corresponding
variable while keeping the other primary variable at 1 � for example,

∆s1 > 0⇒∆x1 = −∆s1 < 0 and ∆x2 = 0.

(The value of s3 also decreases at the same rate, which does not a�ect the objective value.)
The net e�ect is that the objective value decreases at that same unit rate, as indicated by
the reduced cost. The same analysis applies to increasing s2.

LP Myth 11. In the absence of degeneracy, the standard simplex method does not repeat a
basis exchange.

Saaty[45] presented this conjecture with some supporting intuition. In the absence of degener-
acy, this has a unique choice of departing variable for the exchange. However, Goldman and
Kleinman[25] found the following:

Counterexample. This is a special case of the family of counterexamples in [25]:
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max 3x1 + 2x2 :

7x1 + 2x2 ≤ 7

3x1 + 2x2 ≤ 4

x1, x2 ≥ 0.

Adding slack variables s = (s1, s2), and starting at x = (0, 0), the standard simplex
iterations are:

Basic Basis
Iteration Vertex Variables Exchange

0 (0, 0) s1, s2 s1 ← x1

1 (1, 0) x1, s2 s2 ← x2

2 ( 3/4 , 7/8 ) x1, x2 x1 ← s1

3 (0, 2) s1, x2

LP Myth 12. The standard simplex method does not revisit a basic feasible solution (that
is, cycle) as it pivots to an optimum.

Ho�man[31] gave the �rst example of cycling in the standard simplex method, which has 11
variables and 3 equations. (Also see Gass and Vinjamuri[21] for elaboration and a collection
of cycling examples.)

Counterexample. The following is due to Beale[5], with only 7 variables and 3 equations.

x1 x2 x3 x4 x5 x6 x7 RHS

( 1/4 ) −60 − 1/25 9 1 0
1/2 −90 − 1/50 3 1 0

1 1 1
− 3/4 150 − 1/50 6 • • • 0
↑

1 −240 − 4/25 36 4 0
(30) 3/50 −15 −2 1 0

1 1 1
• −30 − 7/50 33 3 • • 0

↑
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1 ( 8/25 ) −84 −12 8 0
1 1/500 − 1/2 − 1/15

1/30 0
1 1 1

• • − 2/25 18 1 1 • 0
↑

25/8 1 − 525/2 − 75/2 28 0
− 1/160 1 ( 1/40 ) 1/120 − 1/60 0
− 25/8

525/2
75/2 −25 1 1

1/4 • • −3 −2 3 • 0
↑

− 125/2 10500 1 (50) −150 0
− 1/4 40 1 1/3 − 2/3 0
− 125/2 −10500 −50 150 1 1
− 1/2 120 • • −1 1 • 0

↑

− 5/4 210 1/50 1 −3 0
1/6 −30 − 1/150 1 ( 1/3 ) 0

1 1 1
− 7/4 330 1/50 • • −2 • 0

↑
Next tableau is same as �rst.

LP Myth 13. new A simplex method does not cycle for an assignment problem.

�A simplex method� is taken to mean any sequence of (adjacent) basic feasible solutions that
enters a basic variable with negative reduced cost. This need not be the standard simplex
method, which selects one with the most negative reduced cost.

Counterexample. Gassner[22] provides a 4× 4 with costs:

c =


3 5 5 11
9 7 9 15
7 7 11 13
13 13 13 17

 .
Begin with the diagonal assignment: x11 = x22 = x33 = x44 = 1. Let the additional 3
basic (degenerate) variables be x12, x23, and x34. Here is the initial (abbreviated) tableau:
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Nonbasic
Basic level x13 x14 x21 x24 x31 x32 x41 x42 x43

x11 1 0 0 1 0 1 0 1 0 0
x22 1 −1 −1 1 0 1 1 1 1 0
x33 1 0 −1 0 −1 1 1 1 1 1
x44 1 0 0 0 0 0 0 1 1 1
x12 0 1 1 −1 0 −1 0 −1 0 0

← x23 0 1 1 0 1 −1 −1 −1 −1 0
x34 0 0 1 0 1 0 0 −1 −1 −1

38 −2 2 4 4 0 −2 2 0 −2
↑

There are three candidates for entering the basis; select x13. Then, there are two candi-
dates to leave the basis; select x23. The pivot results in the following tableau:

Nonbasic
Basic level x14 x21 x23 x24 x31 x32 x41 x42 x43

x11 1 0 1 0 0 1 0 1 0 0
x22 1 0 1 1 1 0 0 0 0 0
x33 1 −1 0 0 −1 1 1 1 1 1
x44 1 0 0 0 0 0 0 1 1 1

← x12 0 0 −1 −1 −1 0 1 0 1 0
x13 0 1 0 1 1 −1 −1 −1 −1 0
x34 0 1 0 0 1 0 0 −1 −1 −1

38 4 4 2 6 −2 −4 0 −2 −2
↑

The next entering variable is x42, which has reduced cost = −2 (not the most negative).
In each of the subsequent tableaux, Gassner selects an entrant with reduced cost = −2,
although some have a reduced cost = −4, which would be selected by the standard simplex
method.

Nonbasic
Basic level x12 x14 x21 x23 x24 x31 x32 x41 x43

x11 1 0 0 1 0 0 1 0 1 0
x22 1 0 0 1 1 1 0 0 0 0
x33 1 −1 −1 1 1 0 1 0 1 1
x44 1 −1 0 1 1 1 0 −1 1 1
x42 0 1 0 −1 −1 −1 0 1 0 0
x13 0 1 1 −1 0 0 −1 0 −1 0

← x34 0 1 1 −1 −1 0 0 1 −1 −1
38 2 4 2 0 4 −2 −2 0 −2

↑
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Nonbasic
Basic level x12 x14 x21 x23 x24 x31 x34 x41 x43

x11 1 0 0 1 0 0 1 0 1 0
x22 1 0 0 1 1 1 0 0 0 0
x33 1 −1 −1 1 1 0 1 0 1 1
x44 1 0 1 0 0 1 0 1 0 0

← x42 0 0 −1 0 0 −1 0 −1 1 1
x13 0 1 1 −1 0 0 −1 0 −1 0
x32 0 1 1 −1 −1 0 0 1 −1 −1

38 4 6 0 −2 4 −2 2 −2 −4
↑

Nonbasic
Basic level x12 x14 x21 x23 x24 x31 x34 x42 x43

x11 1 0 1 1 0 1 1 1 −1 −1
x22 1 0 0 1 1 1 0 0 0 0
x33 1 −1 0 1 1 1 1 1 −1 0
x44 1 0 1 0 0 1 0 1 0 0
x41 0 0 −1 0 0 −1 0 −1 1 1

← x13 0 1 0 −1 0 −1 −1 −1 1 1
x32 0 1 0 −1 −1 −1 0 0 1 0

38 4 4 0 −2 2 −2 0 2 −2
↑

Nonbasic
Basic level x12 x13 x14 x21 x23 x24 x31 x34 x42

x11 1 1 1 1 0 0 0 0 0 0
x22 1 0 0 0 1 1 1 0 0 0
x33 1 −1 0 0 1 1 1 1 1 −1
x44 1 0 0 1 0 0 1 0 1 0

← x41 0 −1 −1 −1 1 0 0 1 0 0
x43 0 1 1 0 −1 0 −1 −1 −1 1
x32 0 1 0 0 −1 −1 −1 0 0 1

38 6 2 4 −2 −2 0 −4 −2 4
↑

Standard
simplex
enters x31

Nonbasic
Basic level x12 x13 x14 x23 x24 x31 x34 x41 x42

x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 1 1 1 1 −1 0 −1 0
x33 1 0 1 1 1 1 0 1 −1 −1
x44 1 0 0 1 0 1 0 1 0 0
x21 0 −1 −1 −1 0 0 1 0 1 0
x43 0 0 0 −1 0 −1 0 −1 1 1

← x32 0 0 −1 −1 −1 −1 1 0 1 1
38 4 0 2 −2 0 −2 −2 2 4

↑
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Nonbasic
Basic level x12 x13 x14 x23 x24 x32 x34 x41 x42

x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 0 0 0 0 1 0 0 1
x33 1 0 1 1 1 1 0 1 −1 −1
x44 1 0 0 1 0 1 0 1 0 0
x21 0 −1 0 0 1 1 −1 0 0 −1
x43 0 0 0 −1 0 −1 0 −1 1 1

← x31 0 0 −1 −1 −1 −1 1 0 1 1
38 4 −2 0 −4 −2 2 −2 4 6

↑

Nonbasic
Basic level x12 x13 x14 x21 x23 x32 x34 x41 x42

x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 0 0 0 0 1 0 0 1
x33 1 1 1 1 −1 0 1 1 −1 0
x44 1 1 0 1 −1 −1 1 1 0 1
x24 0 −1 0 0 1 1 −1 0 0 −1

← x43 0 −1 0 −1 1 1 −1 −1 1 0
x31 0 −1 −1 −1 1 0 0 0 1 0

38 2 −2 0 2 −2 0 −2 4 4
↑

Nonbasic
Basic level x12 x13 x14 x21 x32 x34 x41 x42 x43

x11 1 1 1 1 0 0 0 0 0 0
x22 1 1 0 0 0 1 0 0 1 0
x33 1 1 1 1 −1 1 1 −1 0 0
x44 1 0 0 0 0 0 0 1 1 1

← x24 0 0 0 1 0 0 1 −1 −1 −1
x23 0 −1 0 −1 1 −1 −1 1 0 1
x31 0 −1 −1 −1 1 0 0 1 0 0

38 0 −2 −2 4 −2 −4 6 4 2
↑

Nonbasic
Basic level x12 x13 x21 x24 x32 x34 x41 x42 x43

x11 1 1 1 0 −1 0 −1 1 1 1
x22 1 1 0 0 0 1 0 0 1 0
x33 1 1 1 −1 −1 1 0 0 1 1
x44 1 0 0 0 0 0 0 1 1 1
x14 0 0 0 0 1 0 1 −1 −1 −1
x23 0 −1 0 1 1 −1 0 0 −1 0

← x31 0 −1 −1 1 1 0 1 0 −1 −1
38 0 −2 4 2 −2 −2 4 2 0

↑
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Nonbasic
Basic level x12 x13 x21 x24 x31 x32 x41 x42 x43

x11 1 0 0 1 0 1 0 1 0 0
x22 1 1 0 0 0 0 1 0 1 0
x33 1 1 1 −1 −1 0 1 0 1 1
x44 1 0 0 0 0 0 0 1 1 1

← x14 0 1 1 −1 0 −1 0 −1 0 0
x23 0 −1 0 1 1 0 −1 0 −1 0
x34 0 −1 −1 1 1 1 0 0 −1 −1

38 −2 −4 6 4 2 −2 4 0 −2
↑

The next pivot brings us back to the initial tableau, thus completing the cycle. (Also see
Gass[20, Chap. 10].)

Gassner proved that a simplex method cannot cycle for n < 4, so the above is an example of
a smallest assignment problem for which a simplex method cycles. To my knowledge, there is
no example of an assignment problem that cycles with the standard simplex method. Please
let me know if you have one.

LP Myth 14. Suppose LP is solved and πi is the dual price associated with the i
th constraint.

Then, the same solution is obtained when removing the constraint and subtracting πiAi•x from
the objective.

The reason this incorrect is because other solutions might exist to the revised LP. This error
has caused some to say that a tax is equivalent to a prohibition in the sense that the dual price
can be used as a tax in an LP that adds the tax to the objective and removes the prohibition
constraint.

Counterexample. min x + 2y : 0 ≤ x, y ≤ 10, x + y = 1. The solution is (x∗, y∗) = (1, 0)
with dual price, π = 1 for the last constraint. Then, the tax equivalent is:

min y : 0 ≤ x, y ≤ 10.

The solutions are of the form (x, 0), where x is arbitrary in [0, 10]. Using a simplex method,
the solution obtained will be one of the extremes: x = 0 or x = 10, neither of which is the
original solution. In fact, the basic solution (10, 0) violates the original constraint.

A motivating application is the control of emissions of some pollutant. In an LP, there may
be a prohibition constraint:

max cx : x ≥ 0, Ax = b, dx ≤ δ,

where dj is the rate of emission caused by activity j, and δ is the limit. The tax model has
the form:

max cx− τdx : x ≥ 0, Ax = b,

where τ is the shadow price associated with the prohibition constraint (equal to an extreme
dual-variable value). Although the prohibition solution is optimal in this tax model, there
may be other optimal solutions that violate the limit.

Consider a numerical example for electricity generation by three sources: scrubbed coal, oil,
and uranium. The variables are fuel purchases and generation. The prohibition is a limit
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on sulfur emissions (LSU) while satisfying electricity demand (DEL). The B-rows balance
fuels.

Purchase Generate Dual
PCL POL PUR GSC GOL GUR Price

COST 18 15 20 0.9 0.6 0.4 = min
BCL 1 −1 ≥ 0 18
BOL 1 −1 ≥ 0 15
BUR 1 −1 ≥ 0 20
DEL 0.3 0.3 0.4 ≥ 10 67.5
LSU 0.2 0.6 ≤ 6 −8.25
bound 25 10
level 15 5 10 15 5 10

The solution to this LP generates all the electricity it can from uranium, which is 4 units, and
the remaining 6 units from the only combination of oil and scrubbed coal to satisfy both the
demand and the sulfur limit: GSC = 15 and GOL = 5. The issue is whether the sulfur-limit
constraint can be replaced by a tax on sulfur emissions.

The tax model adds 8.25 times the LSU coe�cients to the objective:

COST + 8.25(0.2GSC + 0.6GOL).

The tax model and its two optimal solutions are:

Purchase Generate Dual
PCL POL PUR GSC GOL GUR Price

COST 18 15 20 2.55 5.55 0.4 = min
BCL 1 −1 ≥ 0 18
BOL 1 −1 ≥ 0 15
BUR 1 −1 ≥ 0 20
DEL 0.3 0.3 0.4 ≥ 10 67.5
bound 25 10

level1 20 0 10 20 0 10

level2 0 20 10 0 20 10

The tax LP has alternative solutions with extremes that contain the original limit of 6 units
of sulfur emissions. At one extreme (level1), the company uses no oil; it generates the 6 units
of remaining electricity (after nuclear generation) by scrubbed coal. This complies with the
sulfur limit with slack: the amount of sulfur emitted is only 4 units. At the other extreme
(level2), the company uses no scrubbed coal. This violates the sulfur limit: the amount
emitted is 12 units. (This is the solution to the original model without the sulfur limit
constraint; the prohibition was speci�ed to disallow this.)

Because the `equivalent' tax model could result in a violation, the tax might be levied at
slightly more than the dual price of $8.25. In that case, however, the result is overly con-
servative, resulting in much less sulfur emission than was deemed necessary for good health
while raising the cost above its minimum.

The problem is the bang-bang phenomenon with linear models: solutions respond to data
changes by an all-or-nothing principle. This re�ects the fact that constant rates of substitution
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cause trade-o�s that are marginally bene�cial to be globally bene�cial; only a constraint can
stop the negotiation.

LP Myth 15. Let z(t) = min{cx : x ≥ 0, Ax = b+ th}, where h is a (�xed) m-vector. Then,
z is piece-wise linear, where the break-points occur wherever there must be a basis change.

The fallacy is the last sentence. The reason that this is not correct is that not every change
in basis implies the slope must change.

Counterexample. minx−y : x, y ≥ 0, x−y = t. Because z(t) = t for all t, there is only one
linearity interval (no breakpoints). However, for t positive, we must have x basic, and for
t negative, we must have y basic. At t = 0 there are two optimal bases, and the basis must
change as t varies in either of the two directions. Thus, although the basis must change
(to be feasible), the point at which this occurs (namely, at t = 0) is not a breakpoint of z.

Note: the interior approach gives the correct answer (that is, the slope changes when the
optimal partition changes). In the example, the optimal support has both x > 0 and y > 0,
no matter what the value of t. Thus, the optimal partition does not change.

LP Myth 16. new Alternative, integer-valued optima in a shortest path problem correspond
to alternative shortest paths.

Counterexample. Consider the following network, where the LP is to ship one unit from
node 1 to node 4 along the least costly route. An optimal solution is the shortest path,
1 → 2 → 4, with a cost of $3. There are two parameters, α, β, whose values can create
alternative optima. We assume α ≥ −3 to avoid a negative cycle, and we assume β ≥ 0.

If β = 0, another shortest path is 1 → 3 → 4.
The two shortest paths correspond to two basic
optima in the LP formulation, consistent with
the myth. However, when α = −3, we have a
zero-cost cycle: 1 → 2 → 4 → 1. Any solu-
tion can be augmented by an arbitrary amount
of �ow around the cycle without changing the
total cost.

The essence of the myth rings true � there are two simple paths corresponding to two basic
optima. However, the alternative optima with positive �ow around the cycle spoils the result
being literally true. One must consider zero-cost cycles as a caveat in how the statement is
worded. The issue runs deeper in separating true alternative optima from frivolous ones. In
particular, the dual always has alternative optima of the form π′ = π + K, where π is any
dual solution and K > 0. This is frivolous because they do not convey any true alternatives
in the underlying economics.

To illustrate the di�erence between true
versus frivolous alternative dual optima,
consider a 3-tier supply, shown on the
right. The dual price at node 4 depends
on the demand parameter δ ≥ 0.
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For δ = 0, the initial supply step can be basic, giving a basic dual price of π4 = 3 (and π1 = 0).
Another basic optimum has the initial supply step out of the basis at its upper bound of one
unit, and the second supply step is in the basis (at zero level), giving π1 = 1. The price at
node 4 then becomes π4 = 4. We have another interval of optimal prices at δ = 2. Optimal
dual prices are never unique, but when δ 6= 0, 2, 4, alternatives are frivolous in that we could
simply add any constant to all of them to obtain an alternative optimum. That notion of
�alternative� does not correspond to a real alternative; it is an artifact of the modeling.

To summarize, we have the following cases (for α ≥ −3, β ≥ 0, δ ≥ 0):

Primal Dual
unique α > −3, β > 0 never

frivolous α = −3, β > 0 δ 6= 0, 2, 4
true alternatives α > −3, β = 0 δ = 0, 2, 4

LP Myth 17. In a standard assignment problem, it is always optimal to assign the person-
to-job that has the least cost.

If this were true, we would have a greedy algorithm that recursively assigns the pair of least
cost among unassigned pairs. As illustrated with the following counterexample, the optimality
of an assignment depends upon relative costs. The one with least cost may eliminate an
alternative savings that is greater when considering second-least costs.

Counterexample.

1 2
10 15

This is a 2 × 2 problem, and the issue is whether to assign Person 1 to Job
1 since that is the least cost.

If we assign Person 1 to Job 1, that cost is only 1, but we must then assign Person 2 to
Job 2. That yields a total cost of 16. The optimal assignment is to assign Person 1 to Job
2 and Person 2 to Job 1, for a total cost of 12.

LP Myth 18. Given an assignment problem with a non-optimal (but feasible) assignment,
its cost can be reduced by swapping some pair of assignments.

The following counterexample is adapted from Bertsekas[8].

Counterexample. There are 3 people to be assigned to 3 jobs. The current assignment is
shown below with the solid arcs, having total cost = 6.

Numbers next to arcs are costs.
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Here are the possible pair-wise swaps:

Old New ∆cost
{1-1, 2-2} {1-2, 2-1} 0
{1-1, 3-3} {1-3, 3-1} 0
{2-2, 3-3} {2-3, 3-2} 0

Every pair of swaps leaves the cost unchanged, but an optimal assignment is {1-2, 2-3,
3-1}, having total cost = 3.

LP Myth 19. A transportation problem with unique shipping costs has a uniquely optimal
shipment.

Counterexample. Rubin and Wagner[44] pointed this out after noticing that managers
apply this myth in practice. They provided the following:

Supplier 1 Supplier 2 Demand

Market 1
55

0 10
5

10 0
10

Market 2
65

5 5
15

10 10
15

Market 3
75

10 0
25

0 10
10

Supply 20 20

The upper number in each cell is the
unit shipping cost. For example, each
unit shipped from Supplier 1 to Market
1 is $55. The lower-left number is the
shipment in one optimal solution, and
the lower-right number is the shipment
in another optimal solution.

Note that the unit costs are all di�erent, yet there are alternative optimal shipments. (The
minimum total cost is $1,275.)

LP Myth 20. The optimal dual price of a demand constraint equals the increase in the
minimum total cost if that demand is increased one unit.

This fails if the solution is not at a compatible basis [30] (in the presence of primal degeneracy).

Counterexample. The following is taken from Rubin and Wagner[44].

Supplier 1 Supplier 2 Demand Price

Market 1
55
10

10
0‡

10 55†,55‡

Market 2
65
0†

15
10

10 65†,60‡

Market 3
80
0

25
10

10 75†,70‡

Supply 20 20 †Basis 1
Price 0, 0 50, 45 ‡Basis 2

The cell values are unit costs
and the (unique) optimal
shipment levels. Two (basic)
dual prices are shown.

If Market 2 demand increases, the �rst basis is compatible, and the change in the minimum
total cost is indeed $65. This can be achieved by sending one unit from Supplier 1 (which
has excess). The basis is compatible with this change because the shipment level, x12, can
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increase from its degenerate basic value, 0. On the other hand, if the solver obtains Basis
2, the $60 dual price understates the increase in minimum total cost.

However, if we want to know the rate of savings from decreasing the demand in Market 2,
we obtain the minimum optimal dual price (among the alternative optima) of the demand
constraint. It is given by Basis 2 by letting the basic shipment level, x21, increase by 1,
balanced by decreasing x11 and x22 to 9.

The importance of using the wrong dual price for a marginal demand change is that the
computed change in the minimum total cost may not be correct. One must have the
maximum dual price to compute the e�ect of a demand increase, and one must have the
minimum dual price to compute the e�ect of a demand decrease. (More details are in
[28].)

For non-network LPs the myth can fail by having the correct slope (that is, ∂f∗(b)/∂bi = πi),
but the slope changes at ∆bi < 1, so the e�ect of a full unit change cannot be measured
precisely with the shadow price.

LP Myth 21. An increase in a demand requirement (with concomitant increase in supply)
increases the minimum total cost.

This is called the �more-for-less paradox.� The following transportation problem is from
Charnes and Klingman[17] (also see [49]).

Counterexample. There are 3 suppliers, with supplies shown in the last column, and 4
destinations, with demands shown in the last row. The cell values are optimal �ows (blank
is zero) and the boxed cell values in the NW corner are costs. The modi�ed problem is to
increase demand 1 and supply 2 by 9 units. The new optimal �ow is shown on the right,
and the total cost has decreased from $152 to $143, despite the increase in total �ow, from
55 to 64.

1
11

6 3
7

5
2 20

7 3 1
10

6
10

9 4
13

5 4
12 25

11 13 17 14 55

1
20

6 3 5
20

7 3
2

1
17

6
19

9 4
11

5 4
14 25

20 13 17 14 64

Original Problem Modi�ed Problem

Min Cost = $152 Min Cost = $143

The underlying economics is that the greater �ow can take advantage of low-cost activities.
In the transportation example, shipments from supplier 1 to destination 1 have the lowest
cost, but the original demand is not enough to ship all of the availability supply; supplier
1 must ship to other destinations. In the revised problem, supplier 1 can ship all of its
units to destination 1, and the other destinations can meet their requirements from other
suppliers less expensively.
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D�ineko, B. Klinz, and G. J. Woeginger[18] provide the following 3×3 transportation problem:
supply: s = (0, 1, 1), demand: d = (1, 1, 0), and cost: cij = 2|i−j|. The minimum total cost is
4. Increasing the �rst supply and last demand to s′ = d′ = (1, 1, 1), the minimum total cost
is only 3. They proceed to develop a key condition under which this paradox cannot occur:
there does not exist i, j, p, q such that cij + cpq < ciq. If this condition does not hold, the
more-for-less paradox may apply, depending on the data.

Glover[9, p. 37] gives another example:

The supplies and demands are
required ranges, and the arc
numbers are unit �ow costs.

The minimum feasible �ow is 15 units, and the least costly way to send that minimum is
x13 = 6, x14 = 4, and x24 = 5, for a total cost of $151. However, we can ship x13 = 10 and
x24 = 9, for a total cost of $143. We thus ship more for less!

Another form of the more-for-less paradox also arises with modeling requirement constraints
as equations, rather than with inequalities. The problem need not be a network.

Counterexample. The following is a diet problem with 3 foods and 2 nutrient requirements,
given by Arsham[4, 1]:

min 40x1 + 100x2 + 150x3 :
x1 + 2x2 + 2x3 = 10

3x1 + x2 + 2x3 = 20
x1, x2, x3 ≥ 0.

The optimal diet is x = (6, 2, 0) with a minimum total cost of $440. If we increase the
second nutrient requirement to 30, the optimal diet becomes x = (10, 0, 0) with a minimum
total cost of $400.

The diet problem usually has the canonical form:

min cx : Ax ≥ b, x ≥ 0

(perhaps with bounds on the levels of foods, as L ≤ x ≤ U). To require Ax = b does not give
the �exibility of allowing over-satisfaction of nutrient requirements, even though it could be
quite healthy to do so. This principle carries over to other situations, where modeling with
equations is not the appropriate representation. (Also see Charnes, Du�uaa, and Ryan[14].)

Arsham[3] provides another vantage, with some focus on production problems.

LP Myth 22. new The line-drawing step of the Hungarian method for the assignment
problem can be replaced by: cover as many zeroes as possible with each line.

There have been several variants of the Hungarian algorithm � see Kuhn[35]. The original
Hungarian method is to cover the zeroes with a minimum number of lines. This myth suggests
another criterion, which turns out not to guarantee an optimal solution.
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Counterexample. Storøy and Sørevik[52] provide the following 5× 5 (* denotes non-zero):

The line-drawing rule starts by covering the three zeroes in row 5, followed by covering
the two zeroes in row 4. Thus, a total of �ve lines must be drawn to cover all zeroes.
Since this equals the number of rows (and columns), the Hungarian method's next step is
to create an optimal solution from the covered zeroes. This is not possible.

The minimum number of lines is four, and the Hungarian method continues to subtract
the minimum uncovered element (adding it to those covered by two lines).

LP Myth 23. The Stepping Stone Method always produces an optimal distribution.

This clever, early algorithm by Charnes and Cooper[13] speci�cally requires equality con-
straints (with total supply equal to total demand). It was extended to the general node-
bounded problem by Charnes and Klingman[16]:

min
∑
i,j cijxij : x ≥ 0

si ≤
∑
j xij ≤ si, ∀i

dj ≤
∑
i xij ≥ dj , ∀j,

where 0 ≤ s ≤ s (supply out-�ow bounds) and 0 ≤ d ≤ d (demand in-�ow bounds).

Charnes, Glover, and Klingman[15] illustrated that the Stepping Stone Method need not
terminate with an optimal solution if the constraints are the following special case of the
node-bounded problem:

min
∑
i,j cijxij : x ≥ 0,

∑
j xij ≥ ai,

∑
i xij ≥ bj .

Counterexample. Charnes, Glover, and Klingman gave a counterexample for each case:∑
i ai =

∑
j bj

1 6 3 5 20
7 3 1 6 10
8 3 4 3 25

11 13 17 14

∑
i ai <

∑
j bj

2 4 3
1 1 1
2 5 1

3 4

∑
i ai >

∑
j bj

1 1 2 5
6 5 1 6

2 7 1

Each table gives the data in the form:
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c11 . . . c1n a1

...
...

...
cm1 . . . cmn am

b1 . . . bm

The solutions given by the Stepping Stone Method are the associated xij :∑
i,j cijxij = 127

11 0 9 0
0 2 8 0
0 11 0 14

∑
i,j cijxij = 13

2 1
0 3
1 0

∑
i,j cijxij = 27
2 3 0
0 4 2

Here are feasible solutions with lower costs:∑
i,j cijxij = 118

20 0 0 0
0 2 17 0
0 11 0 14

∑
i,j cijxij = 12

3 0
0 4
1 0

∑
i,j cijxij = 15
2 7 0
0 0 6

LP Myth 24. new The standard free-�oat formula for an activity in an activity-on-arc net-
work equals the maximum leeway for scheduling the activity without a�ecting any the earliest
start time of any later activity.

The standard formula for the free �oat (FF ) activity (i, j) is:

FFij = ESj − ECi (LP.1)

where ES = earliest start time, EC = earliest completion time.

The statement is true in the absence of dummy arcs, but it can be an underestimate when all
successors of some activity in the activity-on-arc network are dummy arcs.

Counterexample. Zhao and Tseng[53] provide the following (numbers on arcs are activity
durations):

incorrect correct
Activity (i, j) FFij FFij

B (0, 2) 1 2
D (0, 4) 0 2
F (1, 2) 0 1

The incorrect values are from (LP.1). For example, FF02 = ES2−(ES0+5) = 6−(0+5) =
1. The maximum leeway, however, is 2. If we delay starting activity B by 2 time units,
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that will delay reaching node 2 by 2 time units. But since all arcs out of node 2 are dummy
arcs, no activity is immediately a�ected. Instead, the �oat limit of 2 comes from tracing
the paths out of node 2. Path 2→ 7→ 8 gives a limit of 2 time units � that is, increasing
the start of activity B by t delays the start of activity N by t− 2 for t ≥ 2. Similarly, the
path 2→ 4→ 5→ 8 reveals that the start of activity L will be delayed by t− 9, and the
path 2 → 4 → 6 → 8 reveals that the start of activity M will be delayed by t − 10. The
binding limit is from the �rst path, which yields the correct �oat value of 2.

Similarly, applying (LP.1) to arc (0, 4), we have the incorrect value: FF04 = ES4−(ES0 +
7) = 7 − (0 + 7) = 0. The correct value is obtained by tracing the paths 4 → 5 → 8 and
4 → 6 → 8. The former path yields a �oat limit of 2 time units (since activity L earliest
start time = ES5 = 9); the latter yields a �oat limit of 3 time unit (since activity M
earliest start time = ES6 = 10). The least of these limits is 2, which is the correct �oat
value.

Zhao and Tseng developed this into an algorithm that follows dummy arcs from a rooted
tree to obtain the correct free �oat values.

LP Myth 25. The maximum �ow of commodities through a network equals the capacity of
a minimum disconnecting set.

This is correct when there is only one commodity and for special cases of more than one. The
failure for general numbers of commodities on networks of arbitrary topology was recognized
in the 1950's � see Zullo[55] and her bibliography through 1995. The following example is
from Ford and Fulkerson[19], and is further discussed by Bellmore, Greenberg, and Jarvis[6].

Counterexample. In the following network, all capacities are 3.

The max-�ow is to send 3/2 units along each path from its source to its sink, for a
total of 9/2 units. Here are the (unique) paths for each commodity: s1→ y→ z→x→ t1;
s2→ z→x→ y→ t2; s3→x→ y→ z→ t3.

The minimum disconnecting is just to break the cycle, say with arc (x, y), and the supply
arc for the one remaining commodity, which is (s1, y), for a total of 6 units of capacity.
There is no 1-arc disconnecting set, so this is a minimum, which implies max-�ow <
min-cut.
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LP Myth 26. Undirected arcs can be replaced by a pair of oppositely oriented arcs, and there
is no loss in generality in obtaining a max-�ow or a min-cut.

This is true for a single-commodity network[19], but it generally fails for multi-commodity
networks. The following is given by Bellmore, Greenberg, and Jarvis[6].

Counterexample. In the following network, capacities are shown next to each edge.

In the undirected graph, the max-�ow is only 3, sending 3/2 units of each commodity (the
min-cut is also 3). After the replacement of each edge with opposite arcs, the max-�ow
becomes 4 units (also the min-cut value).

(Note: for a single commodity there is no advantage to sending �ow across both arcs since
they would cancel out in computing the total �ow.)

LP Myth 27. The maximum two-way �ow of a commodity through a network equals its
min-cut.

In this variation of capacitated network �ow, some links may be directed (arcs) and some
may be undirected (edges). The �ow on edges may be in either direction. Two-way �ow from
node s to node t, denoted s ↔ t, means two paths, one from s to t, denoted s → t, and one
from t to s, denoted t→ s. A two-way �ow is a pair of paths, one in each direction, and the
value of the �ow is the minimum of all capacities of the links in the paths. A two-way cut for
(s, t) is a set of links whose removal removes all paths in both directions, s→ t and t→ s.

Rothschild and Whinston[41] provide the following:

Counterexample. In the following network (taken from [41]), all capacities are one. We
have: two-way max-�ow = 1 < two-way min-cut = 2.

s t
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LP Background � Gomory-Hu Cut Trees

Consider an undirected graph with distinguished nodes s, t. Each edge e has a capacity, ce, so
there is a maximum �ow from s to t, which equals the minimum cut that disconnects s from t.
The multi-terminal max-�ow/min-cut problem is to �nd the max-�ow/min-cut between each
s, t in the graph. This could be done by solving each of the ( n2 ) min-cut problems, but the
Gomory-Hu algorithm[26] does this with only n− 1 min-cut solutions.

Let Vst denote the max-�ow/min-cut value between s and t. The Gomory-Hu algorithm
produces a cut-tree (sometimes called a Gomory-Hu tree), whose nodes are those of the
original graph and whose edges satisfy:

Vst = min
(i,j)∈Pst

Vij , (LP.2)

where Pst = edges in s-t path. The Gomory-Hu algorithm computes the n − 1 cuts, from
which (LP.2) yields all of the ( n2 ) min-cut values in the original graph.

Example (taken from [26]):

Capacitated network Gomory-Hu cut-tree

For example, V14 = 13 = min{18, 17, 13, 14}. The cut set is {(2, 3), (2, 5) (6, 3), (6, 4), (6, 5)},
with graph partition = {1, 2, 6 | 3, 4, 5}.

A cut-tree has two key properties:

1. Each max-�ow/min-cut value in the original graph equals the minimum of the edge
values along the unique path connecting them in the cut-tree (that is, equation (LP.2)).

2. Removal of any edge from the cut-tree partitions the original graph into two sets of
nodes that comprise a cut set whose value equals the cut-tree edge value.

The �rst property gives the correct value of the min-cut, and hence the max-�ow, and the
second property gives the actual cut-set for any pair of nodes.

LP Myth 28. Every connected network has a cut-tree.

The classical algorithm by Gomory and Hu[26] constructively establishes the existence of a
cut-tree for every connected, undirected graph. This was allegedly extended to directed
graphs for the symmetric case: the min-cut between two nodes is the lesser of the min-cut
from one to the other:

Vst = min{Vst, Vts}
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Counterexample. Benczúr[7] provides the following:

Only 3 (of 7) cut-sets are min Flow trees do not encode min cut-set

Here are the min-cut values:

V =


0 1 1 1
∞ 0 3 3
∞ ∞ 0 ∞
∞ ∞ 4 0

⇒V =


0 1 1 1
1 0 3 3
1 3 0 4
1 3 4 0

 .
Since the min-cut value of A is 1 and all other min-cut values are greater than 1, any
cut-tree must have A as a leaf. That leaves 9 trees to consider. Of these, 4 are shown
with the edge values equal to the associated min-cut values: V (C1 = (A |B,C,D)) = 1,
V (C2 = (A,B |C,D)) = 3, and V (C3 = (A,D |B,C)) = 4. Each tree violates the second
property to be a cut-tree: the cut-set obtained upon breaking an edge of minimum value
in the path between two nodes is not their min-cut.

Going from left-to-right, the �rst two trees' violation is with (D,C). The cut-sets obtained
from the edge is (D |C,B,A) and (C |D,B,A), respectively, but the min cut-set between
D and C is C3. The third tree's violation is with (B,C). The cut-set obtained from
the edge is (B |C,D,A), but the min cut-set between B and C is C2. The fourth tree's
violation is with (B,D). The cut-set obtained from the edge is (B |D,C,A), but the
min-cut is C2.
Now consider the other possible trees. Separating C and D makes their path value 3,
which is not the value of their min-cut. The four shown are the only ones satisfying
the �rst property of a cut-tree, showing the correct values of the min-cut using equation
(LP.2). Since min-cut=max-�ow, these are called �ow trees.

Rizzi[40] provides the following with additional insight.

Counterexample.

In any tree there must be a leaf. Any cut-
tree for this network must therefore have a
star cut, (v | {u 6= v}). Suppose z is a leaf
and its neighbor is y. The edge value of (z, y)
is the star cut value V (z |x, y, w, xa, . . . ) =
3. If it were a cut-tree, this partition must
be the min-cut between z and y. This is not
the case, as the min-cut between z and y is
V (z, x | y, w, xa, . . . ) = 2.
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The key property identi�ed by Rizzi is the notion of a good pair : (s, t) such that the star
cut at t is a min-cut of (s, t), or there is no min-cut of (s, t) (that is, no path s → t or
t→ s). Rizzi's network has no good pair, and that is why a cut-tree does not exist.

LP Myth 29. Removing an arc in a network cannot decrease users' latency or cost.

This is Braess' Paradox [11] applied to tra�c �ow.

Counterexample. The following is the classical example[12] � also see http://supernet.som.
umass.edu/facts/braess.html.

`(x) is the latency function of �ow, x;
c(x) is the cost.

The equilibrium �ow is determined by each driver using the min-latency path. For n
users, such that n < a, this is s → v → w → t. (The users are indi�erent among the
three paths if n = a.) This results in each user experiencing 2n units of latency. If we
remove arc (v, w), the drivers evenly split the use of the two di�erent paths: s → v → t
and s→ w → t. Their latencies thus reduce to 1

2
n+ a each.

Using the same graph, Steinberg and Zangwill[48] provide the rest of the counterexample,
using the cost functions shown. With arc (v, w), 6 users evenly split each of the three
paths from s to t, so that xsv = xwt = 4, while the other arc �ows are 2. Thus, each user
pays $92, and the system cost is $552. Without arc (v, w), 6 users split evenly between
the two paths. Thus, each user pays $83, and the system cost is $498.

A great deal of literature has developed since Braess introduced his paradox in 1968. It has
become a cornerstone of tra�c equilibrium, as re�ected in modern books by Nagurney[36, 39, 37]

and Roughgarden[42]. Also see Nagurney[38] and Roughgarden[43] for focus on the Braess
paradox and its relatives.

LP Myth 30. Given strict improvement in the objective value, the standard simplex method
does not visit an exponential number of vertices of the feasible polyhedron.

The falsity of this was �rst demonstrated by Klee and Minty[34]. The so-called Klee-Minty
polytope causes the standard simplex method to visit every extreme point, which grows ex-
ponentially with the number of variables.

Counterexample. The LP has n variables, n constraints, and 2n extreme points. The
elementary simplex method, starting at x = 0, goes through each of the extreme points
before reaching the optimum solution at (0, 0, . . . , 0, 5n).
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max 2n−1x1 + 2n−2x2 + . . . + 2xn−1 + xn:
x1 ≤ 5

4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125

...
...

2nx1 + 2n−1x2 + . . . + 4xn−1 + xn ≤ 5n

x ≥ 0.

Another interesting example of exponential growth is due to Blair[9].

Jeroslow[32] was the �rst to present the construction of a class of examples for the best-gain
basis entrance rule to visit an exponential number of vertices. (Also see Blair[9].)

LP Myth 31. The worst-case time complexity of the simplex method is exponential and
hence worse than the worst-case time complexity of the interior-point method.

There are several things wrong with this statement. The �rst thing to note is that there is
no �the simplex method� and there is no �the interior-point method.� We know that both
the standard simplex method and the best-gain rule have exponential time complexity (see
LP Myth 30). However, the Hirsch Conjecture [54] leaves open the prospect for some simplex
method to be linear in the numbers of variables and constraints. Also, there are interior-point
methods that behave better than Karmarkar's original[33] in practice, but have no proof of
polynomial complexity.

The second thing to note is the perturbation analysis by Spielman and Teng[47]. In fact, many
coe�cients are subjected to �random� perturbation due to rounding in their computations
from other data.

Now suppose we are talking about the standard simplex method and one of the interior-
point methods with a proof of polynomial complexity in the length of the data. Then, the
third thing to consider is that the length of the data could be an exponential function of the
number of variables. One example of this is a Linear Programming Relaxation (LPR) whose
coe�cients are computed from an aggregation algorithm[24]. The length of the coe�cients
(number of digits) can be an exponential function of the numbers of variables and constraints.

Thus, one must be careful in how to compare the (theoretical) worst-case time complexities
of simplex versus interior methods.

LP Myth 32. new The c-diameter of a non-empty polytope of dimension d with f facets
cannot exceed f − d.

Let P denote the polytope (that is, bounded polyhedron), and let V ∗(P, c) denote the set
of vertices that minimize a linear form, cx, on P . The c-diameter from a vertex v ∈ P for
a given linear form is de�ned as the maximum distance from v to V ∗(P, c). The distance is
de�ned to be the minimum number of edges in a path joining v to V ∗(P, c) along which cx
is non-increasing. (In terms of LP, the c-diameter is an upper bound on how many vertices
the simplex method visits before reaching an optimal vertex.) Denote the c-diameter from v
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by ∆(v, c), and the myth asserts ∆(v, c) ≤ f − d. This is known as the monotonic bounded
Hirsch conjecture.

Counterexample. Todd[50] provides the following:

P = {x ∈ �4
+ : Ax ≤ b}, where A =


7 4 1 0
4 7 0 1
43 53 2 5
53 43 5 2

 , b =


1
1
8
8

 .

This is a 4-dimensional polytope with 8 facets, so the myth asserts that the c-diameter
cannot exceed 4 for any linear form. Let c = (1, 1, 1, 1), so V ∗(P, c) = {(0, 0, 0, 0)T}. Todd
proves that all non-increasing paths from v = 1

19 (1, 1, 8, 8)T to 0 have a distance of 5.

LP Myth 33. In employing successive bound reduction in a presolve, we can �x a variable
when its bounds are within a small tolerance of each other.

The myth is that we can pick a tolerance, say τ > 0, such that if we infer L ≤ x ≤ U and
U −L ≤ τ , we can �x x to some value in the interval, such as the midpoint, 1

2
(L+U). There

are a few things wrong with this, as reported by Greenberg[27].

Counterexample. Consider x ≥ 0 and

1
2
x1 + x2 = 1
x1 + x2 = 2.

This has the unique solution, x = (2, 0), and it is this uniqueness that causes a problem
with greater implications.

In successive bound reduction, the most elementary tests evaluate rows to see if just one
row alone can tighten a bound on a variable. Initially, the bounds are the original ones:
L0 = L = (0, 0) and U0 = U = (∞,∞). The �rst iteration results in the inference that
x1 ≤ 2, from the �rst equation and the fact that x2 ≥ 0. It similarly produces an upper
bound, x2 ≤ 1, so U1 = (2, 1). Still in iteration 1, the second equation causes the inference,
x1 ≥ 1, because we already have x2 ≤ 1 when we get there. Thus, L1 = (1, 0).

At a general iteration, we will have inferred Lk1 ≤ x1 ≤ 2 and 0 ≤ x2 ≤ Uk2 , where Lk1 < 2
and Uk2 > 0. At the end of iteration k, the inferred bounds are:

2− ( 1
2
)k ≤ x1 ≤ 2 and 0 ≤ x2 ≤ ( 1

2
)k .

This converges to the unique solution, but it does not reach it �nitely. If the iterations go
far enough, the bounds become within the tolerance τ > 0. At that point, suppose x is
�xed to the interval's midpoint: x = 1

2
(Lk + Uk).

To see a consequence of this, suppose that the presolve tests feasibility with another
tolerance, µ. Let the constraints be of the form Ax = b. The rule is: Declare infeasibility
if, for some equation, i,

ymax
i = max

Lk≤x≤Uk
Ai•x < bi − µ or

ymin
i = min

Lk≤x≤Uk
Ai•x > bi + µ.
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In our example, when k = d− log2 τe, both variables are �xed:

x1 = 2− ( 1
2
)k+1

, x2 = ( 1
2
)k+1

.

Equation 2 passes the feasibility test, but equation 1 has

ymax
1 = ymin

1 = 1− ( 1
2
)k+2 + ( 1

2
)k+1 = 1 + ( 1

2
)k+2

.

Thus, ymin
1 = 1 + ( 1

2
)k+2, so we declare infeasibility if ( 1

2
)k+2

> µ. Taking logs, this is
equivalent to −(k+ 2) > log2 µ. Replacing k, we have that a false infeasibility is declared
if

−d− log2 τe − 2 > log2 µ.

For example, if τ = 2−20, we declare a false infeasibility if µ < 2−22.

This example highlights two things:

1. Tolerances are related. The tolerance to �x a variable should not be substantially less
than the infeasibility tolerance.

2. Fix a variable judiciously. When having inferred xj ∈ [Lj , Uj ], such that Uj − Lj is
within tolerance of �xing xj , do so in the following order of choice:

(1) If Lj is an original bound, �x xj = Lj ;

(2) If Uj is an original bound, �x xj = Uj ;

(3) If [Lj , Uj ] contains an integer, p, �x xj = p;

(4) If all of the above fail, �x xj = 1
2
(Lj + Uj).

LP Myth 34. A factored form of the basis contains less error for FTRAN after reinversion.

The Forward Transformation (FTRAN) algorithm solves the forward system, Bx = b, by
factoring B and updating it after each basis change. Consider the elementary product form:
B = E1E2 · · ·Ek, where each Ei is an elementary matrix.

Algorithm: Forward Transformation with PFI

Initialize. Set x0 = b.
for i = 1 : k do

Solve Eixi = xi−1

end for
Exit with xk the (computed) solution to Bx = b.

During the pivoting process, k increases and there are more factors than needed. Reinversion
is the process of restarting to obtain the minimum number of factors, which equals the number
of variables in the basis (except slacks). One reason to reinvert is to �cleanup� the errors that
accumulate, which a�ects the accuracy of solving BxB = b. (Another reason is to reduce the
FTRAN time.)

The essence of the counterexample is cancelation of errors in the �rst factors that does not
cancel in the reinverted factorization.
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Counterexample. Consider the 2× 3 system:

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2

Pivoting x1 on equation 1, then x2 on equation 2 into the basis, then replacing x1 with
x3 yields the following elementary factors:

E1 =
[
a11 0
a21 1

]
; E2 =

[
0 a12/a11

1 a22 − a21a12/a11

]

E3 =
[
a13/a11 − a22 − a12a)21/a11)((a23 − a13a)21/a11)/a12/a11 0(

a23 − a13a21/a11

)
/(a12/a11) 1

]
.

Collecting computed values and substituting c with a new index whenever there is a new
computation, we obtain:

E1 =
[
a11 0
a21 1

]
; E2 =

[
0 c1
1 c2

]
; E3 =

[
c3 0
c4 1

]
.

Then, executing FTRAN for b (to get basic levels):

x1 =

(
b1/a11

b2 − (b1/a11)a12

)
=

(
c5

c6

)

x2 =

(
x1

1 − (x1
2/c2)c1

x1
2/c2

)
=

(
c7

c8

)

x3 =

(
x2

1/c3

x2
2 − (x2

1/c3)c4

)
=

(
c9

c10

)

After reinversion, the elementary matrices have the form:

E1 =
[
a13 0
a23 1

]
; E2 =

[
0 c11
1 c12

]
.

Now the FTRAN algorithm yields computed levels:

B̂−1b =
(
c13
c14

)
.

Suppose β = B−1b, the true value of the levels. The issue is whether∣∣∣∣∣∣∣∣(β1 − c13
β2 − c14

)∣∣∣∣∣∣∣∣ = ||β − ζ ′|| <
∣∣∣∣∣∣∣∣(β1 − c9

β2 − c10

)∣∣∣∣∣∣∣∣ = ||β − ζ|| ,

where ζ the accumulated error before reinversion, and ζ ′ is the accumulated error after
reinversion.

It is possible that ζ = 0 while ζ ′ 6= 0 � that is, that we obtain an error-free solution
with the original factorization and reinversion introduces error. This can happen by error
cancelation. However, even if ||ζ ′|| < ||ζ||, the computed levels could have less error, at
least for some particular b. For example, let β = (100, 100)T, ζ = (2, 2)T, and ζ ′ = (1,−1)T.
Then, ||ζ|| > ||ζ ′||, yet ||β − ζ|| u 138.6 < 141.4 u ||β − ζ ′|| .
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Integer Programming and Combinatorial Optimization

The general form of an Integer Program (IP) is the optimization (min or max) of a function
over a domain such that the variables are required to have integer values. An Integer Linear
Program (ILP) has the form of LP with x ∈ �n. If only some of the variables must be integer,
it is called a Mixed-Integer Program (MIP). If it has the form of LP, but with xj ∈ � for
j ∈ J 6= ∅, it is a Mixed-Integer Linear Program (MILP). The LPR of a MILP is the Linear
Programming Relaxation of xj ∈ �, allowing non-integer solutions for all variables.

We include combinatorial optimization problems, even those that are not usually modeled
with IP.

IP Myth 1. The integer solution is a rounding of some LPR solution.

It is possible that every MILP solution could be far from the relaxed solution. In fact, it is
possible that no rounding is feasible.

Counterexample. max 21x1 + 11x2 : x ≥ 0, 7x1 + 4x2 ≤ 13.
The relaxed solution is at

(
13
7 , 0

)
, and the optimal integer solution is at (0, 3).

Glover and Sommer[12] provide more meaningful examples, including a conditional transporta-
tion problem. Additional examples and discussion are in Glover[9] and Glover, Klingman and
Phillips[11].
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IP Myth 2. If a basic solution of the LPR of a MILP is not integer-valued, no rounding is
possible.

This clever paradox was noted by Glover and Sommer[12] with the following �proof:�

The only fractional variables, which could be rounded, are basic, but the basic
equations, BxB = b, have a unique solution. Hence, no rounding is possible!

The �aw is the assumption that all non-basic variables must remain �xed at zero (or an upper
bound). In particular, slack variables may change to o�set the rounding.

IP Myth 3. The LPR solves its associated ILP if, and only if, it has an optimal basic
solution that is integer-valued.

The su�ciency is always true, but the necessity of an integer-valued optimum that is basic
applies to binary programs (whose LPR is in standard form) and may not hold otherwise.
The following counterexample has an optimality region with non-integer extreme points but
an optimal integer point in its interior.

Counterexample. max 0x : 0 ≤ x ≤ b e, x ∈ �, where b 6∈ � and e is a vector of ones.
Dropping the integer requirement, the LP solution is any feasible point. For b > 1, e is
feasible and hence optimal for the LP. Therefore, it is optimal for the ILP, but it is not a
basic optimum for the LPR.

IP Myth 4. The number of extreme points of the integer hull is at least as great as the
number of extreme points of the LPR polyhedron.

Counterexample.

The LPR polyhedron can have regions
with no integer points, as illustrated to
the right. The integer hull has 3 extreme
points, whereas the LPR polyhedron has
4 (and could have any arbitrary num-
ber).

3x1 + x2 ≤ 3

x1 + 3x2 ≤ 3

x ≥ 0

The same myth and counterexample applies if �facets� replaces �extreme points.�

IP Myth 5. The number of extreme points of the integer hull is bounded by some multiple of
those of the LPR, where the multiple depends upon the number of variables and constraints.

Rubin[28] provides the following counterexample that shows the integer hull can have any
number of extreme points with only one constraint in �2

+. (Also see Jeroslow[17].)
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Counterexample. De�ne a polytope in 2 variables and 1 constraint plus non-negativity:
P = {x ∈ �2

+ : a1x1 + a2x2 ≤ b}, where a, b > 0. This has three extreme points. We can
choose a, b such that its integer hull, convh(P ∩�2), has N extreme points for any N ≥ 3.
The following �gures show two such polytopes:

(a) N = 4 (b) N = 5

The following table shows more, and you may note a pattern that Rubin discovered.

N a1 a2 b
4 1 2 3
5 3 5 24
6 8 13 168
7 21 34 1,155
8 55 89 7,920
9 144 233 54,288
10 377 610 372,099

Let Fk be the k th Fibbonacci number, and P = {x ∈ �2
+ : F2kx1 +F2k+1x2 ≤ F 2

2k+1−1}.
Then, convh(P ∩ �2) has k + 3 extreme points.

Rubin gives other ways to generate the polytope for one constraint in �2
+ such that it has

any number of extreme points.

The same myth and counterexample applies if �facets� replaces �extreme points.�

IP Myth 6. new Every integral vector of an n-dimensional integral polyhedral pointed cone
C can be expressed as a non-negative integral combination of at most n elements of the Hilbert
basis of C.

It it were true, this would be an extension of Carathéodory's theorem. Let z1, . . . , zk ∈ �n
be generators of

C = {z : z =
∑k
i=1 λiz

i for some λ ∈ �k+}.

Counterexample. Bruns et al.[1] provide the following:

z1 = (0, 1, 0, 0, 0, 0), z6 = (1, 0, 2, 1, 1, 2),
z2 = (0, 0, 1, 0, 0, 0), z7 = (1, 2, 0, 2, 1, 1),
z3 = (0, 0, 0, 1, 0, 0), z8 = (1, 1, 2, 0, 2, 1),
z4 = (0, 0, 0, 0, 1, 0), z9 = (1, 1, 1, 2, 0, 2),
z5 = (0, 0, 0, 0, 0, 1), z10 = (1, 2, 1, 1, 2, 0).
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The generators form a Hilbert basis for C, and the myth asserts that every integral vector
in C is a conical combination of only 6 of the 10 generators. Consider

g = (9, 13, 13, 13, 13, 13) = z1 + 3z2 + 5z4 + 2z5 + z8 + 5z9 + 3z10.

A minimum number of generators can be obtained by the ILP:

min
∑10
i=1 ui :

∑10
i=1 λiz

i = g,

ui ∈ {0, 1}, 0 ≤ λi ≤ 13ui, λi ∈ Z for i = 1, . . . , 10.

Bruns et al. solved this and found that seven generators are needed. They show how to
generate more counterexamples, giving insight into why more than six are necessary.

Bruns et al. also prove that for n ≥ 6 there exists some C ⊆ �n+ for which at least
⌊

7
6n
⌋

vectors are needed to span its integral vectors.

IP Myth 7. If some activities in an LP have a �xed charge, a valid MILP model is to
introduce a binary variable, z, for each such activity and include constraints of the form,
0 ≤ x ≤ Uz, where U is a given or derived upper bound on x. The �xed charge, K, enters
the objective with the linear term Kz.

The model is min{f(x) + Kz : x ∈ X, zj ∈ {0, 1} and 0 ≤ xj ≤ zjUj for j ∈ J}, where J is
the set of variables with �xed charge. The idea is that zj = 0 forces xj = 0, whereas zj = 1
presents no additional constraint on xj , and allows xj > 0, in which case it incurs the �xed
charge. The issue arises when K < 0, sometimes called a �xed bene�t.

Counterexample. Let K = −1 in the following: min 5x − z : 0 ≤ x ≤ 10z. The optimum
sets z = 1, but x = 0, contrary to what is intended.

This is an example of the MIP-Representable problem, introduced by Meyer[25] and advanced
by Jeroslow and Lowe[19]. For a �xed charge, the minimization renders z = 1 as an optimal
binary value if x > 0 is optimal. For a �xed bene�t, however, the minimization could render
z = 1 with x = 0, thus not representing the problem correctly.

Ed Klotz points out another problem, using software with imperfect arithmetic. Suppose
there is no a priori upper bound, and you use a �big-M� for the constraint: 0 ≤ x ≤ Mz.
If M is chosen large enough that x ≤ M is redundant, the model is theoretically correct
(for K > 0). However, the integrality tolerance allows z = τ to be considered integer-valued
(cplex R© uses τ = 10−5). Suppose you set M = 109. Then, the solver can set x = 100 and
z = 100/109 = 10−7 < τ , thus allowing x > 0 with a net �xed-charge of only K × 10−7.

IP Myth 8. If an ILP has an unbounded LPR, the ILP is also unbounded.

The following counterexample is due to Byrd, Goldman and Heller[2], based on the work of
Meyer[24], who showed this cannot happen with rational data and a feasible ILP.

Counterexample. maxx1 : x ≥ 0, x ∈ �4, x3 −
√

2 (x1 − x2) = 0, x2 + x4 = 1.

The constraint set for the LP relaxation contains the ray, {(t, 0, t
√

2, 1) : t ≥ 0}. Thus,
the LPR is unbounded. The integer solutions, however, must have x1 = x2 in {0,1} and
x3 = 0. Thus, the only feasible solutions to the ILP are (0,0,0,1) and (1,1,0,0).
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Ed Klotz points out that the IP can be bounded even with rational data if you allow type 2
SOS declarations, as in cplex.

Counterexample. max x1 : x ≥ 0, x2 ≤ 1, x3 − 1.41421x1 + 1.41421x2 = 0,

SOS

S2:: x_1: 1 x_2: 2 x_3 : 3

End

In the LP relaxation, the ray (t, 0, t∗1.41421) remains feasible. However, the SOS require-
ment allows only 2 consecutive variables in the SOS set to take on nonzero values, so it
cuts o� this unbounded direction when enforced. As a result, the MIP has a bounded,
optimal solution of x1 = x2 = 1. Of course, you could model the SOS2 condition with
regular integer variables, but those would involve binary variables and big-M values, which
would make the associated LP relaxation bounded by the value of M.

IP Myth 9. new If an ILP has an unbounded LPR, the ILP is feasible.

This was motivated by a question from Marbelly Davila.

A polyhedron is unbounded if it contains a feasible half-line � that is, {x0 + th : t ≥ 0} ⊆ P ,
where x0 ∈ P and h 6= 0.

Counterexample. Let P = {(x, y) : x ≥ 3
4
, y ≥ 1

2
, x− y = 1

4
} =

{
( 3

4
, 1

2
) + t(1, 1) : t ≥ 0

}
.

This does not contain any integer point since

(x, y) = ( 3
4

+ t, 1
2

+ t)→x− y = 1
4
→x 6∈ � or y 6∈ �.

IP Myth 10. Suppose x∗(t) is an optimal solution to the parametric ILP:

min{cx : Ax ≥ b+ td, x ∈ �n+}, for t ≥ 0.

If t′ < t′′ and x∗(t′) = x∗(t′′), then x∗(t) is optimal for all t ∈ [t′, t′′].

Wang and Horng[33] provide the following:

Counterexample. min 3x1 + 2x2 : x ∈ �2
+,

2x2 ≤ 9, 25x1 + 10x2 ≥ 129 + 2t, 5x1 + 20x2 ≥ 82− 4t.

At t = 0 and t = 1, the optimal solution is x∗(0) = x∗(1) = (4, 4); however, x∗( 1
2
) = (4, 3).
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IP Myth 11. One can solve an ILP �nitely by adding cuts of the form∑
j∈Nk xj ≥ 1

where Nk is the set of non-basic variables in the k th LP relaxation having a fractional basic
solution.

This is known as the Dantzig cut [3]. Gomory and Ho�man[13] showed that the Dantzig cuts
need not converge �nitely to an optimal solution with the following:

Counterexample.

max z = 4x1 + 3x2 + 3x3 : x ∈ {0, 1}3, 3x1 + 4x2 + 4x3 ≤ 6.

The optimal integer solution is at x = (1, 0, 0), with z = 4. Let sj be the slack variable
for the upper bound, xj + sj = 1, and let s0 be the slack variable for the constraint,
3x1 + 4x2 + 4x3 + s0 = 6. The LPR solution is at x = (1, 3

4 , 0), with z = 6 1
4
and

s = (0, 0, 1
4
, 1).

The following table gives �ve iterations, introducing a slack variable, tk, when the k th cut
is constructed.

x1 x2 x3 s0 s1 s2 s3 t1 t2 t3 t4 t5 z cut

1 3
4

0 0 0 1/4 1 6 1/4 x3 + s0 + s1 − t1 = 1
6
7

0 6
7

0 1/7 1 1/7 0 6 x2 + s0 + t1 − t2 = 1

1 2
7

2
7

5
7

0 5
7

2
3

0 0 5 5
7

s1 + t1 + t2 − t3 = 1

1 0 1
2

1 0 1 1
2

1
2

1
2

0 5 1
2

x2 + s1 + t2 + t3 − t4 = 1
6
13

6
13

9
13

0 7
13

7
13

4
13

3
13

3
13

0 0 5 7
13

s0 + t3 + t4 − t5 = 1

The cuts keep going, never terminating �nitely.

IP Myth 12. For any 0-1 program with a single constraint, there exists a B&B algorithm
that can determine if it is feasible in polynomial time.

The following is due to Jeroslow[18]:

Counterexample. max x1 : x ∈ {0, 1}n, 2x1 + 2x2 + · · ·+ 2xn = n.

This is infeasible for n odd, but any Branch-and-Bound (B&B) algorithm (that is, with
any rule for �xing values of fractional variables in the LP relaxation) must evaluate at
least 2dn/2e nodes before it discovers (and certi�es) that it is infeasible.

Ed Klotz, a longtime member of the ILOG cplex technical sta�, points out that modern B&B
algorithms are more broadly construed to include preprocessing, among other things, that
would solve this example without exhaustive search. The counterexample does emphasize the
need for such things. (This is another example of how optimization software may use di�erent
conventions than in the theory � see LP Myth 9.)
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IP Myth 13. An optimal schedule of jobs with deadlines on a single machine is given by the
Ratio Rule.

Thanks to Jan-Karel Lenstra for contributing this myth.

Smith[30] asserted this in the very early years, when simple rules were sought for special cases.
He proposed four ideas:

1. Shortest Processing Time (SPT) Rule: schedule jobs in non-decreasing order of process-
ing times.

2. If jobs are weighted, let tj/wj be the processing time over the (positive) weight. To
minimize total weighted completion time, schedule jobs in non-decreasing order of tj/wj .
This is the Ratio Rule.

3. If each job j must be �nished by a given deadline dj , one minimizes total completion
time by selecting from all jobs j that are eligible for the last position (that is, i for which
di ≥

∑
j tj) the one with largest ti; put that job in the last position and repeat. If, at

any point, there is no eligible job, there is no feasible schedule.

4. If each job j must be �nished by a given deadline, one minimizes the total weighted
completion time by combining the ideas of (3) and (4) � that is, by applying the Ratio
Rule to the eligible job from the end of the schedule backwards.

Lenstra, Rinnooy Kan, and Brucker[23] prove that problem 4 is NP-hard, so the assertion is
a myth (unless P = NP ). Many thanks to Jan-Karel Lenstra for providing the following:

Counterexample. We have three jobs with process times: t = (2, 1, 1), deadlines: d =
(4, 4, 3), and weights: w = (7, 4, 1). The Ratio Rule yields the schedule (2, 3, 1) with
objective value 34. The optimal schedule is (1, 3, 2) with objective value 33.

IP Myth 14. A no-wait �ow-shop's makespan cannot be worse by increasing the speed of
some machines.

Spieksma and Woeginger[31] provide the following:

Counterexample. Jobs 1, 2, and 3 are scheduled, each with three stages of operations as
shown in the following �gure. The minimum makespan is 14.

Now suppose the time spent on each machine in stage 2 is cut in half. Because the
problem is a no-wait �ow-shop, there cannot be any idle time between the processing of
consecutive operations of the same job. Thus, the same job order yields a makespan of 15.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 40
March 10, 2009

12:34pm IP Myths & Counterexamples

This is the minimum makespan for the new problem with speedup in stage 2. (The
job orders 1-3-2 and 2-1-3 also have makespans of 15; job orders 2-3-1 and 3-1-2 have
makespans of 17; and, job order 3-2-1 has a makespan of 19.)

Spieksma and Woeginger provide variations on the speedup and establish the following:

For every real number r ≥ 1, there exists an instance of the no-wait �ow-shop problem
with minimum makespan C∗ a speedup of processing time for some jobs and machines
such that the makespan is at least r C∗.

IP Myth 15. new The worst-case solution quality of the First-Fit bin-packing algorithm
equals the maximum feasible decomposition of the bin size.

Let α denote the bin size, and let L = {a1, . . . , an} be an ordered list of items with sizes
0 < s(ai) ≤ 1. Let OPT (L,α) denote the minimum number of bins needed to pack the items,
and let FF (L, 1) denote the number of bins of size 1 needed for a First-Fit packing of L. The
worst-case solution quality is the ratio:

R(α) = lim sup
N→∞

max
L

{
FF (L, 1)

N
: OPT (L,α) = N

}
.

A feasible decomposition of α is an ordered sequence of integers p1 ≤ p2 ≤ . . . , such that∑
i

1
pi

= α, p1 ≥ 2, and
∣∣{i : pi > 2}

∣∣ ≥ 2.

For example, for α = 1, p = (2, 3, 6) is a feasible decomposition. (Note that p2 > 2 to satisfy
the last condition.) Once we set p3 = 6, we are done since

1
p1

+
1
p2

+
1
p3

=
1
2

+
1
3

+
1
6

= 1 = α.

Let P(α) equal the set of feasible decompositions of α, and de�ne the maximum feasible
decomposition:

W (α) = max
p∈P(α)

∑
i

1
pi − 1

.

For example, W (1) = 1 + 1
2

+ 1
5

= 17
10 .

The myth asserts R(α) = W (α). This was conjectured by Garey, Graham, and Johnson[8],
upon noticing its truth for the special case of a bin size of 1: R(1) = W (1) = 17

10 , a curious
equation. Further, they found an e�cient algorithm to compute W (α), so if the conjecture
proved true, we could compute the worst-case solution quality without solving the worst-case.
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Counterexample. Shearer[29] provides the following. Let α = 1
3

+ 1
7

+ 1
62 = 641

1302 = 2564
5208 .

Consider a list L of 120 items with sizes:

s(ai) = 745
5208 , 1 ≤ i ≤ 30

s(ai) = 869
5208 , 31 ≤ i ≤ 60

s(a2i−1) = 1695
5208 , 31 ≤ i ≤ 60

s(a2i) = 1819
5208 , 31 ≤ i ≤ 60

The First-Fit algorithm packs L into 41 bins of size 1. The �rst �ve bins each contain 6
items of size 745

5208 ; the next six bins each contain 5 items of size 869
5208 ; and, the remaining

30 bins each contain 1 item of size 1695
5208 and 1 item of size 1819

5208 . An optimal packing uses

60 bins of size α, so R(α) ≥ 41
60 . However, W (α) = 1

2
+ 1

6
+ 1

61 = 2500
3660 <

41
60 .

IP Myth 16. Suppose the edge weights satisfy the triangle inequality in a general routing
problem. Consider required nodes i, j, k such that (i, j) 6∈ E and

[
(k, `) ∈ E ↔ ` ∈ {i, j}

]
.

Then, the required nodes can be replaced by one required edge (i, j) with weight wij = wik+wkj.

Let G = [N,E] be an undirected graph with edge weights w ≥ 0. The General Routing
Problem (GRP) is to �nd a tour with minimum total weight that contains a speci�ed subset
of nodes, N̂ , and a speci�ed subset of edges, Ê. (Note that this specializes to the TSP if
N̂ = N and Ê = ∅ and to the Chinese Postman Problem if N̂ = ∅ and Ê = E.) The myth
assumes wij ≤ wik + wkj .

Orlo�[26] introduced the reduction rule with the intuition that the added edge represents the
path i→ k → j. Lenstra and Rinnooy Kan[22] provide the following:

Counterexample. Let N̂ = N and Ê = ∅ in the following graph.

An optimal tour is
k → j → g → i→ h→ j → k

with total weight = 10.

Applying the reduction, the new GRP has N̂ = {g, h} and Ê = {(i, j)} with wij =
wik + wkj .

An optimal tour is
i→ j → g → i→ h→ j → i
with total weight = 14.

(See Orlo�'s rejoiner[27] and [22] for the merit of using the reduction rule as a heuristic.)
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IP Myth 17. In B&B it is best to branch from the largest upper bound (for maximization).

Fox et al.[6] provide the following:

Counterexample. The numbers next to each node in the following search tree are the upper
bounds. Assume node G contains the maximum whose value is 2.

The largest-upper-bound (LUB) branching rule searches the nodes in one of the orders:

1. A, B, C, D, E, F, G (H & I not generated)
2. A, B, D, C, E, H, I, F, G

The particular order depends upon the expansion rule and how ties are broken. After B
is expanded with children D & E, order 1 uses breadth-�rst search and chooses C; order 2
uses depth-�rst search and chooses D. Order 1 is better because it searches fewer nodes,
but order 2 could be the one generated by the LUB branching rule.

A key to whether LUB is in some sense an optimal branching rule partly depends upon
how ties are broken and the order in which the siblings are expanded. If the right-child is
expanded �rst (among those with the same upper bound), the orders become:

1'. A, B, E, D, C, G

2'. A, B, E, D, I, H, C, G

Order 1' checks only 6 nodes, which is better than the left-child order of expansion.

In any case, the shortest path to the solution node is A, C, G, which does not follow the
LUB rule. Node B must still be expanded to con�rm optimality at node G, so the full
sequence is 6 nodes: A, C, G, B, D, E (or E, D).

One alternative to LUB is to branch on the node with the least ambiguity � that is, fewest
binary variables that are not �xed[15]. The rhetoric for this choice is that we can reach closure
quickly, and a smart implementation computes look-ahead implications, generally arising from
logical conditions in the model. For example, selecting one project may force other projects
to be rejected, scheduling some job may force other schedule assignments, and so on. Thus,
suppose we are given two nodes with the following properties: node A has LPR bound 100
and 75 binary variables that have not been �xed, of which 20 are fractional; node B has LPR
bound 101 and 10 variables that have not been �xed, one of which is fractional. The LUB
rule expands A and ignores the other information; the least-ambiguity rule expands B and
ignores the bound. (Hybrid rules use multiple criteria, of which these are two.)

Ties for node selection, whether with LUB or not, do occur in practice, partly because the
underlying problem has alternative optima, and partly due to a naive modeler ignoring sym-
metries. For example, in graph coloring, let xij = 1 if we color node i with color j. For

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



IP Myths & Counterexamples
March 10, 2009

12:34pm Page 43

any solution, we can swap colors: x′ represents an equivalent coloring as x, but in the model
x′i,blue = xi,green and x′i,green = xi,blue. Thus, in the model, these are alternative solutions
since x 6= x′, and they have the same objective values, so if one does not add �symmetry
exclusion constraints,� ties are inevitable.

IP Myth 18. If we increase the number of processors in a parallel B&B algorithm, the
number of generated nodes decreases or remains the same.

Lai and Sahni[21] measure performance by the number of iterations, I(n), for n processors. An
iteration of an n-processor model with N open nodes expands min{n, N} nodes. Assuming
maximization, each node is evaluated by computing an upper bound (such as with LPR).
Those nodes that are feasible and have an upper bound that is greater than the current best
value enter the pool; those that are infeasible or cannot have a better objective value are
discarded. Lai and Sahni provide the following:

Counterexample. Assume that the bound of each node is the optimum value (but not
con�rmed as an optimal solution value). The following shows the state tree. The n1-
processor model selects the left portion, resulting in reaching solution node A in 3 iterations
(at which point node B is closed without expansion). The n2-processor model selects the
right portion, expanding the sub-tree rooted at node B for 3k−1 more levels before closing
those leaves and �nally evaluating node A.

They use this construction to prove:

Let n1 < n2. For every k > 0, there exists a problem instance such that k I(n1) < I(n2).

The construction in the state tree has I(n2) = 3k + 1 = k I(n1) + 1 > k I(n1). They also
prove that this cannot happen if the bound is not the optimum value (which allows node B
and the right-tree expansion to be candidate selections that are selected before node A).

IP Background � Parallel Computation of a Schedule

In IP Myths 19�21 suppose we have n identical processors to perform computations in parallel.
Tasks are presented at once with known precedence relations: Ti ≺ Tj means task Ti must be
�nished before task Tj can start. The order of the tasks is given by the list L = {Ti1 , . . . , Tir},
and the rule is that a processor takes the next task in L that is ready (that is, all predecessors
are �nished). The processor time to perform task Ti is denoted by ti.
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To illustrate, let L = {T1, . . . , T9} with associated process times, t = (3, 2, 2, 2, 4, 4, 4, 4, 9).
The precedence relations are:

T1 ≺ T9, T4 ≺ T5, T6, T7, T8.

Here is the time line for three processors:

The makespan is 12.

IP Myths 19�21 are given by Graham[14], who also derives bounds on the makespan ratio
for the improved system to the old, where �improved� is any combination of time reduction,
added processors, precedence relaxation, and list-order rearrangement.

IP Myth 19. If we reduce the computation time of each processor, the makespan cannot
increase.

Graham[14] provides the following:

Counterexample. Change the previous example to have t′ = t−1. The result is a makespan
of 13:

IP Myth 20. If we add another processor, the makespan cannot increase.

Graham[14] provides the following:

Counterexample. The fourth processor results in a makespan of 15:
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IP Myth 21. If we remove some precedence constraints, the makespan cannot increase.

Graham[14] provides the following:

Counterexample. Remove the precedence constraints, T4 ≺ T5 and T4 ≺ T6. This results
in a makespan of 16:

Tovey[32] extended Graham's example as follows.

Counterexample. Using Tovey's notation (nearly), the jobs are denoted: ai, b, wj , xk, y`,
zpq, where i = 1, . . . , A, j = 1, . . . ,W , k = 1, . . . , X, ` = 1, . . . , Y , p = 1, . . . , X, and
q = 1, . . . , n+ 1 (recall n = number of processors). The precedence relations are:

ai ≺ xk, ai ≺ y` ≺ z1q, b ≺ wj ≺ z1q, b ≺ y`, zpq ≺ zp+1,q

for all i, j, k, `, q. (In Graham's example, A = 6, W = 1, Y = 6, and X = 4.)

The �gure on the right (taken from Tovey) shows the
precedence relations.

In any optimal schedule with n = 2 processors, b must precede some ai, but with n = 3
processors, all ai must precede b. If all ai must precede b, a schedule is not optimal for
n processors if, and only if, A + 1 6≡ 0 mod n. If b precedes some ai, a schedule is not
optimal for n+ 1 processors if, and only if, A ≡ 0 mod (n+ 1) and W < n.

In particular, consider n = 2 and Graham's dimensions: a = (a1, . . . , a6), w = (w1),
y = (y1, . . . , y6), and x = (x1, . . . , x4). In this example, b does not precede any ai in an
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optimal schedule. For those same dimensions, increasing n to 3, b must precede every ai
for the schedule to be optimal.

IP Myth 22. new Given jobs with unit time, an optimal schedule on n processors is obtained
by assigning compatible jobs in a minimal partition.

This refers to an early algorithm by Fujii, Kasami, and Ninomiya[7], which is valid for two
processors and they conjectured extends to n > 2 processors.

Two jobs are compatible if neither must precede the other (that is, not adjacent in the transitive
closure of the precedence graph). The algorithm is to form a minimum number of subsets of
compatible jobs, such that each subset contains no more than n jobs. These are then assigned
sequentially, and the minimum makespan is the number of subsets. For example, suppose
T1 ≺ T2 ≺ · · · ≺ TN . Then, there are no compatible jobs, and the subsets are {T1}, . . . , {TN},
giving a minimum makespan of N , using only one processor (and having the other n − 1
processors idle). On the other hand, if the precedence relations are T1 ≺ T2 ≺ · · · ≺ TN

2
and

TN
2 +1 ≺ T2 ≺ · · · ≺ TN (with N even), then with two processors, the jobs can be partitioned

into subsets
{
T1, TN

2 +1

}
,
{
T2, TN

2 +2

}
, . . . ,

{
TN

2
, TN

}
. Then, the minimum makespan is N

2 ,
obtained from the algorithm by assigning:

processor 1 T1 T2 · · · TN
2

processor 2 TN
2 +1 TN

2 +2 · · · TN

The issue is whether this is valid for n > 2 processors. In the above example, for n = 3 suppose
N = 3k and the precedence relations are T1 ≺ · · · ≺ Tk, Tk+1 ≺ · · · ≺ T2k, T2k+1 ≺ · · · ≺ TN .
Then, we can partition the jobs into k subsets, and assign the jobs to achieve the minimum
makespan of N3 .

Counterexample. Kaufman[20] provides the following. Let T1 ≺ T2, T3 and T4 ≺ T5, T6.
For 3 processors, the minimum makespan is 3.

processor 1 T1 T2 T6

processor 2 T4 T3

processor 3 T5

The algorithm, however, obtains the partition
{
{T1, T5, T6}, {T4, T2, T3}

}
, giving the in-

correct minimum makespan of 2. The partition satis�es the properties: each subset has
no more than 3 jobs, and they are compatible.

IP Background � Metaheuristics

A metaheuristic is a top-level general strategy that guides other heuristics to search for fea-
sible solutions in domains where the task is NP -hard. Examples include genetic algorithms,
simulated annealing, and tabu search. The state is a vector de�ned by the problem rep-
resentation; often the state is a solution. A key to any metaheuristic is the de�nition of
neighborhood of a state, denoted N (s). (Unlike the neighborhood de�ned in real analysis, we
typically have s 6∈ N (s).) One example is removing and/or adding an object to a knapsack.
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Another example is replacing two arcs in a travelling salesman tour. A common neighborhood
is complementing one binary value:

N (x) = ∪j{x′ : x′i = xi for i 6= j, x′j = 1− xj}. (IP.3)

Let f be the objective value (or some measure of �tness used in a metaheuristic), which we
seek to maximize. The depth of a non-optimal feasible solution, x, is the minimum value d(x),
such that there exists a sequence <x0 = x, x1, . . . , xk> that satis�es the following conditions:

1. xi is feasible and xi ∈ N (xi−1) for i = 1, . . . , k
2. f(xk) > f(x0).
3. f(xi) ≥ f(x0) + d(x) for i = 1, . . . , n.

The depth of a problem instance P with respect to a neighborhood [and �tness function] is
d(P ) = max{d(x) : x ∈ X}, where X is the set of feasible solutions.

IP Myth 23. new Computing the depth of a discrete optimization problem P with respect
to a neighborhood is at least as hard as solving P .

Woeginger[34] provides the following:

Counterexample. Let P be an instance of the Satis�ability Problem (SAT), which is NP -
complete. Let x be a truth setting and L(x) a logical expression whose truth value we
seek. Let f(x) be the truth value of L(x) (that is, 1 if true; 0 if false), so we seek to
maximize f over the 2n binary values.

De�ne the neighborhood as in (IP.3). Then, the depth of any non-optimal feasible solution
is 0 (with f(xi) = f(xi−1) = 0 for i = 1, . . . , k − 1 and f(xk) = 1), so d(P ) = 0. Further,
the depth of x is trivial to compute.

IP Myth 24. new Computing the depth of a discrete optimization problem P with respect
to a neighborhood is at most as hard as solving P .

Woeginger[34] provides the following:

Counterexample. Let P be an instance of the Satis�ability Problem (SAT). Let x be a
truth setting and L(x) a logical expression whose truth value we seek. Let the state of the
system be bit strings in {0, 1}n+2, where s = (x, sn+1, sn+2) and f(s) = −c(s), where

sn+1 = sn+2 = 0 ⇒ c(s) = 0
sn+1 = sn+2 = 1 ⇒ c(s) = 1

sn+1 6= sn+2, L(x) = 1 ⇒ c(s) = 1
sn+1 6= sn+2, L(x) = 0 ⇒ c(s) = 2

We seek to minimize c, and N (s) is de�ned to be the 1-bit �ip (IP.3) plus s.

Woeginger proves: If L is satis�able, d(P ) = 0. If L is not satis�able, d(P ) = 1. This
proves that determining the depth is NP-hard. Further, a global minimum is found simply
by any output whose last two bits are zero. Thus, the myth is false (unless P = NP ).
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IP Myth 25. new In a metaheuristic search, it is better to start with a best-possible objective
value, even if it is not the global optimum.

Consider a binary IP and the neighborhood as (IP.3) plus complementing all (x′ = 1− x), if
that is feasible.

Counterexample. Glover and Hao[10] provide the following:

max nx1 −
∑n
j=2 xj : x ∈ {0, 1}n, (n− 1)x1 −

∑n
j=2 xj ≤ 0.

The worst feasible solution is x = (0, 1, 1, . . . , 1). Complementing each x yields the global
optimum in one iteration. Starting at some other feasible solution, such as x = 0, causes
the search to re-visit x = 0 many times before reaching the worst solution (followed by
the global maximum).

IP Myth 26. For N su�ciently large, simulated annealing visits the global minimum within
N iterations with probability 1.

Fox[4, 5] provides the following:

Counterexample. Let X = {1, 2, 3} and f(X) = (1, 3, 0), so, x∗ = 3 is the global minimum.
The system state is the value of x, and the neighborhoods are: N(1) = {2}, N(2) = {1, 3},
and N(3) = {2}. The acceptance probability of an uphill move from x1 to x2 is given by:

P (X(k + 1) = x2 |X(k) = x1) = e
− f(x2)−f(x1)

Tk = e
− 2
Tk ,

where Tk is the temperature at iteration k. Once the state moves from x1 to x2, it then
moves to x3, the global minimum. So, not visiting x3 is equivalent to remaining at x1

forever. That probability is given by:

P (X(1) = X(2) = · · · = X(k) = x1 |X(0) = x1) =
k∏
i=1

(
1− e−

2
Ti

)
.

Thus, the system does not reach the global minimum with probability 1 within any �nite
number of iterations.

As the general theory goes, the example does converge to the global minimum asymptotically
with probability 1. However, the expected number of iterations is in�nite. Speci�cally, for a
standard cooling schedule, Fox shows

lim
k→∞

(−k + E[N |N > k]) =∞.

In words, the longer the search has been unsuccessful in reaching the global minimum, the
longer the expected remaining time to reach it.

Fox provides variations that escape this di�culty (among others).

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



IP Myths & Counterexamples
March 10, 2009

12:34pm Page 49

IP Myth 27. In simulated annealing, it is always better to let the temperature decrease.

Hajek and Sasaki[16] provide su�cient conditions for which no cooling temperature sequence is
better than a constant temperature. They then show how the conditions apply to a matching
problem, for which the following counterexample is a special case.

Counterexample. Let G be a simple path with 4 nodes, for which there are �ve matchings,
denoted x0 = ∅, x1 = {(1, 2)}, x2 = {(2, 3)}, x3 = {(3, 4)}, x4 = {(1, 2), (3, 4)}.

G x0 x1 x2 x3 x4

Let x be a matching, and let its neighborhood be any matching that di�ers by exactly one
edge:

N (x0) = {x1, x2, x3}
N (x1) = {x0, x4}
N (x2) = {x0}
N (x3) = {x0, x4}
N (x4) = {x1, x3}.

The transition from xi to xj consists of two steps: (1) Select xj ∈ N (xi) with probability
Rij ; (2) Accept xj according to the following SA rule:

Pr(X(k + 1) = xj |X(k) = xi) =

{
1 if xj ⊃ xi;
e
− 1
Tk if xj ⊂ xi,

where Tk is the temperature. If xj is not accepted, set X(k + 1) = xi.

Let each neighbor be equally-likely to be selected in step 1: Rij = 1
|N (xi)| . Then, the

process is a Markov chain with the following transition probabilities:

x0 x1 x2 x3 x4

Q(Tk) =


0 1

3
1
3

1
3

0
1
2
e
− 1
Tk

1
2
(1− e−

1
Tk ) 0 0 1

2

e
− 1
Tk 0 1− e−

1
Tk 0 0

1
2
e
− 1
Tk 0 0 1

2
(1− e−

1
Tk ) 1

2

0 1
2
e
− 1
Tk 0 1

2
e
− 1
Tk 1− e−

1
Tk


x0

x1

x2

x3

x4

The issue is whether it is better to let {Tk} decrease or remain constant.

For Tk =∞, the search is completely random, and for Tk = 0 the local-maximum matching
x2 is an absorbing state.
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Q(∞) =


0 1

3
1
3

1
3

0
1
2

0 0 0 1
2

1 0 0 0 0
1
2

0 0 0 1
2

0 1
2

0 1
2

0

 . Q(0) =


0 1

3
1
3

1
3

0
0 1

2
0 0 1

2

0 0 1 0 0
0 0 0 1

2
1
2

0 0 0 0 1

 .

Keeping the temperature constant at Tk = ∞ (or any value large enough to ensure ac-
ceptance), the system eventually reaches the global maximum, x4. Whenever the system
reaches the local maximum x2, it moves to x0. On the other hand, as Tk→ 0, the system
could be absorbed at x2. Thus, cooling is worse than the constant temperature.

Hajek and Sasaki conjecture the existence of other problem classes for which it is not optimal
to cool the temperature.
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Dynamic Programming

A dynamic program (DP) is one that can be solved as a sequence of state-dependent op-
timization problems. When the underlying problem is dynamic, time provides the natural
ordering for sequential optimization. However, DP is also a technique used to decompose a
static problem into a sequence of lower-dimensional decision problems. A classical example
of this decomposition is the knapsack problem:

max
∑
j cjxj :

∑
j ajxj ≤ b, x ∈ �n+,

where a, c > 0. (See Martello and Toth[15] for a more extensive introduction.) A DP formu-
lation of this is the forward recursion:

fk(s) = max {cjxj + fk−1(s− ajxj) : xj ∈ �+, ajxj ≤ s} for s = 0, 1, . . . , b,

for k = 1, . . . , n and f0(s) = 0 for all s = 0, . . . , b. The DP algorithm starts with k = 0
(with f0(s) = 0 for s ≥ 0), and it proceeds forward: k = 1, 2, . . . , n. The solution value to
the original problem is fn(b), and x∗ is computed by backtracking through the 1-dimensional
optimal solutions.

At the foundation is Bellman's Principle of Optimality [2]:

�An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the �rst decision.�

This is what enables us to decompose an n-variable problem into a sequence of 1-variable
problems. If the number of states and decisions is �nite, this is equivalent to a shortest path
through a network. The nodes are the (state, stage) pairs and the arcs are the transitions
resulting from the decision.

In its natural time-ordered form, DP represents a sequential decision process: a discrete-time
process characterized by a sequence of states, where the next state depends upon the current
state and decision. (It does not upon the rest of the history of states and decisions.) At each
time period, the decision yields a return and a state transition. Here is the backward DP
recursion:

fk(s) = max
x∈Xk(s)

{rk(s, x) + fk+1(Tk(s, x))},

where Xk(s) is the set of decisions upon entering time period k in state s; rk(s, x) is the
immediate return for choosing x ∈ Xk(s); and, the last term is the total future return after
transitioning to the new state, Tk(s, x). This is illustrated in the following diagram:
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If the time periods are long enough, the present value is used with a discount factor, β ∈ (0, 1]:

fk(s) = max
x∈Xk(s)

{rk(s, x) + βfk+1(Tk(s, x))}.

So, f0(s0) =
∑n
k=1 β

k−1rt(sk, x∗k), where {x∗k} are the decisions made at each time period,
and the state sequence is given by sk = Tk(sk−1, x

∗
k) for k = 1, . . . , n. Denote a policy by

πk(s) = decision made at time k upon entering in state s. An optimal policy maximizes f0(s);
equivalently, π∗k(s) = x∗k for some x∗k ∈ argmaxx∈Xk(s){rk(s, x) + βfk+1(Tk(s, x))}.

The DP is stationary if the decision set and functions are inde-
pendent of time: Xk = X, rk = r, and Tk = T . A stationary
policy is a function of state, but not of time: π(s) ∈ X(s). It
speci�es the decision to be taken. This is illustrated on the
right.

A randomized policy is one that is speci�ed by Pt(s, x) = probability that πt(s) = x when the
system is in state s at time t. The actual decision is determined by some random selection
method according to P . In general, Pt(s, x) ∈ [0, 1] and for �nite or denumerable decision
sets,

∑
x∈Xt(s) Pt(s, x) = 1 for all s. (Pt(s, x) = 0 for x 6∈ Xt(s).) The non-randomized policy,

a.k.a., pure policy, is the special case: Pt(s, πt(s)) = 1 for all s, t; otherwise, Pt(s, x) < 1 for
at least one x ∈ Xt(s) for some s, t.

DP Myth 1. Given a separable objective function, the Principle of Optimality enables the
decomposition into a series of smaller optimization problems over a state space. In particular,
suppose

R(x) = r1(x1)⊕ r2(x2)⊕ · · · ⊕ rn(xn)

over the separable domain, X = X1×X2×· · ·×Xn. Further, we have a simple limit constraint,∑n
j=1 xj ≤ b. Then,

maxx∈X{R(x) :
∑n
j=1 xj ≤ b} = maxs≤b fn(s),

where

fj(s) = max
xj∈Xj

{rj(xj)⊕ fj−1(s− xj) : s− xj ≤ b} for j = 1, . . . , n, s ≤ b.

with f0(s) = i = identity element for ⊕ (= 0 if ⊕ is ordinary addition; = 1 if ⊕ is ordinary
multiplication).

The Principle of Optimality was originally developed for additive processes (where ⊕ is simple
addition). Mitten[16] pointed out that non-additive processes may not decompose directly, as
he developed a general framework.

Counterexample. f(x1, x2) = x1x2 and X1 = X2 = [−2, 1].
For b ≥ −4, the 2-variable maximum value is 4. However, f1(s) = 1 for all s ≤ 1, which
yields f2(s) = 1 for all s ≤ 2. The DP solution is thus x = (1, 1) with R(x) = 1.

The problem is that ⊕ violates Mitten's monotonicity condition on this domain.
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DP Myth 2. The Principle of Optimality is a necessary condition for the optimality of a
policy.

This myth and the following counterexample are given by Porteus[18].

Counterexample. Let the state space be the interval [0, 1]. For each state there are two
possible decisions: X(s) = {0, 1}. The immediate return is the same for each state:
r(s, x) = x. Regardless of the decision and current state, the state transition is a uniform
random variable. The objective is the discounted total return with discount factor β < 1.
It is optimal to set xn(s) = 1 for all n and all states, s. Consider the alternative policy
that sets xk(s) = 1 for s 6= 1. This yields the same expected total discounted return, but
it violates the necessity of the Principle of Optimality.

Because the probability of any one return is zero, what is done for just one decision for one
state has no e�ect on the objective value.

DP Myth 3. In a dynamic lot size inventory model, decreasing setup costs does not increase
total inventory.

The intuition behind this is that inventory is caused by the setup cost. In the Economic
Order Quantity (EOQ) model, we have

Q =

√
2Kd
h

,

where Q is the min-cost order quantity, K is the setup cost, d is the demand, and h is the
holding cost. Thus, reducing the setup cost does reduce the EOQ. However, this does not
carry over to the dynamic lot size problem, where costs and demands occur over time, and
the decision variables are how much to produce in each period to satisfy the demands.

The DP recursion is given by:

ft(y) = min
x≥0

{
pt(x) + ht(x+ y − dt) + ft−1(x+ y − dt) : x+ y ≥ dt

}
, for t = 1, . . . , N

f0(0) = 0; f0(y) =∞ for y > 0,

where y is the inventory level (state), starting with y0 = 0, x is the production level, pt is the
production cost in period t, dt is the demand, and ht is the 1-period holding cost in period t
for the new inventory level, x+ y − dt.

Zangwill[25] provides further discussion and the following:

Counterexample. A plant runs two shifts a day, a morning shift and a night shift. Consider
two days of its operation which we divide into four periods. Designate period 1 as the
morning shift of day 1, period 2 as the night shift of day 1, with periods 3 and 4 the day
and night shifts, respectively, of day 2. Suppose the product demand during each shift is
3 units. Let the variable production cost be linear and stationary: pt(xt) = pxt for all t.
Because total production equals total demand, this form eliminates variable production
cost as a factor in the objective. What remains is the setup cost,

∑
tKtδ(xt), where

δ(x) =
{

1 if x > 0;
0 otherwise.
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Let the holding cost be ht(yt) = yt, for all t, where yt is the inventory at the end of period
t. Thus, the dynamic lot size model is given by:

min
4∑
t=1

(Ktδ(xt) + yt) : x, y ≥ 0,

yt−1 + xt − yt = dt,

with y0 = 0.

Scene 1. At present the plant is quite busy during the day, and the setup costs during the
day are higher than at night. In particular K1 = K3 = 8, K2 = K4 = 5. The optimal
production schedule is x∗ = (3, 6, 0, 3) with associated inventory levels y∗ = (0, 3, 0, 0).

Scene 2. The engineering department undertakes to reduce setup costs and thereby move
closer to a Zero-Inventory system. After considerable analysis, they conceive how to use
the greater range of talent available during the day, which enables them to reduce setup
costs more during the day than at night. After the engineering department completes its
task, the setup costs are signi�cantly reduced and become K1 = K3 = 1, K2 = K4 = 4.
All other costs remain the same. The new optimal production schedule is x′ = (6, 0, 6, 0)
with associated inventory levels y′ = (3, 0, 3, 0). Even though all setup costs have been
cut (and no other changes made), the total inventory level has doubled.

Zangwill provides conditions under which decreasing setup costs results in decreasing inven-
tory. The key feature of the counterexample is that the day-shift reduction is di�erent from
the night-shift reduction.

DP Myth 4. In a dynamic lot size inventory model, decreasing setup costs does not increase
minimum total cost.

See DP Myth 3 for the description of the dynamic lot size problem.

Zangwill[25] provides further discussion and the following:

Counterexample. To manufacture a particular product requires three separate operations,
call them I, II, and III. Suppose also that �ve workstations exist, and each workstation
can do the operations enumerated:

A={I}, B={II}, C={III}, D={I, II}, E={II, III}.

For example, workstation A can do only operation I whereas station D can accomplish
both operation I and operation II. Since all three operations are required to complete the
product, there are three possible routings: A→B→C, A→E, and D→C. For example, route
A→E accomplishes operation I at station A and station E does II and III. Generally, the
various workstations are scheduled carefully with the work �ow balanced and optimally
allocated.

Upon occasion, an emergency rush order for the product arises, which is costly since it
disrupts operations. The more emergency orders that occur during a day the more costly it
becomes because additional disruptions cause the regular schedule to become increasingly
rushed. Initially, suppose for an emergency order on a workstation that the cost for the
xth emergency order that day is

qA(x) = qC(x) = 10 + 10x, qD(x) = qB(x) = qE(x) = 31 + x.
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Here qD(x) = 31 + x means that for workstation D, the setup cost is 31 for processing an
emergency order, and x is the additional cost if x− 1 emergency orders have already been
processed at workstation D. The cost increases as more emergency orders are processed
at a workstation, as mentioned, because of the increased disruption.

The expeditor is the individual who juggles the work and tries to process the emergency
as inexpensively as possible by selecting the routing. The cost depends not only on which
workstations are along the route but also on how many emergencies a workstation has
already had to contend with that day. Given the costs, here is the minimum cost for
processing if there are one or two emergencies in a day:

If one emergency occurs, an optimal route is A→E at a cost of 52.

If a second emergency occurs, an optimal route is D→C, a cost of 52.

Thus, if one emergency occurs, the total cost is 52. Should two emergencies occur, the
total cost is 104.

Suppose the setup cost for an emergency on workstation B is cut from 31 to 10: qB(x) =
10 + x. All other costs remain the same. Now we have:

If one emergency occurs, an optimal route is A→B→C at a cost of 51.

If a second emergency occurs, an optimal route is A→E, at a cost of 62.

Thus, the cost of one emergency during the day is 51, but if two emergencies occur, the
cost is 113. If we are unfortunate enough to get two emergencies during the day, the cost
is higher after the setup cost reduction, so the setup cost reduction has actually increased
the minimum total cost.

DPMyth 5. new The Federgruen-Lee algorithm produces an optimal solution to the dynamic
lot size model with quantity discount.

Federgruen and Lee[5] proposed a DP algorithm, but there are special cases for which it does
not necessarily produce an optimal solution. Notation:

Dt demand in period t
Kt �xed setup cost in period t
ct unit purchase price in period t
ht unit holding cost
N discount quantity
r discount rate
xt amount purchased in period t

The model has xt ≥ N→ purchase cost = ct(1− r) and holding cost = ht(1− r).

Counterexample. Xu and Lu[24] provide the following: n = 4, D = (10, 40, 80, 20), N = 75,
r = 0.1, c = (8, 8, 8, 8), K = (150, 150, 150, 150), and h = (5, 5, 5, 5). The Federgruen-
Lee algorithm obtains x = D with a total cost of $1,736. An optimal solution is x∗ =
(10, 40, 100, 0) with a total cost of $1,660.

Xu and Lu give more insights into the cause of the algorithm's failure. Another cause is given
by the following:
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Counterexample. n = 3, D = (30, 30, 10), N = 60, r = 0.1, c = (10, 10, 10), K =
(60, 60, 60), and h = (2, 2, 2). The Federgruen-Lee algorithm obtains x = (60, 0, 10) with
a total cost of $814. An optimal solution is x∗ = (70, 0, 0) with a total cost of $762.

Xu and Lu presented a modi�ed algorithm to overcome such counterexamples.

DP Myth 6. Consider a dynamic lot size problem in which lead times are stochastic, and
shortages are backlogged. Optimal production levels still satisfy the property that they are zero
with positive incoming inventory and otherwise equal the sum of successive demands.

The appeal of this myth is that the property holds with zero lead times. In that case, whenever
there is zero inventory upon entering period t, the optimal production level is x∗t =

∑t′

k=t dk
for some t′ ≥ t. If the entering inventory is positive, it is enough to meet the demand and
x∗t = 0. More generally, if the lead time of production in period t is Lt, the zero-inventory
point is at period t′ = min{k : k ≥ t + L, dk > 0}. Thus, x∗t y

∗
t′−1 = 0 is the optimality

property in question.

Anderson[1] provides the following:

Counterexample. The horizon is 9 periods with d5 = 2, d8 = 3, and dt = 0 for t 6= 5, 8.
Setup costs are all zero, and the unit production costs are p1 = 2, p2 = 5, p4 = 30, p8 = 3,
and pt = 1000 for t = 3, 6, 7, 8, 9. The holding costs are all zero, and the 1-period unit
shortage costs are nonzero for s5 = s9 = 1000.

Figure taken from [1].

Production cost of 1000 is enough to render x∗3 = x∗5 = x∗6 = x∗7 = x∗9 = 0 in every optimal
solution, so lead times for those periods are not shown. The total production cost is then
2x1 + 5x2 + 30x4 + 3x8.

The total shortage costs for each of the two random lead times are given by:

L2 = 1: − 1000(x2 + x4 − 2)− − 1000(x1 + (x2 + x4 − 2)+ + x8 − 3)−

L2 = 5: − 1000(x4 − 2)− − 1000(x1 + (x2 + x4 − 2)+ + x8 − 3)−

To avoid the 1000-unit costs for shortages, every optimal policy sets x∗2 + x4 ≥ 2, and
x1 + x2 + x4 + x8 ≥ 1.

Since this is a DP, the production levels x4, x8 are determined after the lead time from
period 2 becomes known. The optimal policy is to set x∗1 = 1, x∗2 = 2, and

x∗4 = 2, x∗8 = 0 if lead time = 5
x∗4 = 0, x∗8 = 2 if lead time = 1.
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Since the lead times in period 2 are equally-likely, the total expected cost is

2 + 10 + 1
2
(30× 2 + 3× 2) = 45.

Notice that the zero-inventory point for period 1 occurs at period 8 for the arrival pattern
in which the lead time of x∗2 is 5 periods � that is, x∗1 > 0 and y7 > 0 (where the
zero-inventory point of period 1 is period 8), thus violating the myth's indicated property.

DP Myth 7. new In a dynamic lot size problem, a stochastically greater lead time results in
a greater optimal average cost.

Let L1, L2 be random lead times. Then, L1 is stochastically greater than L2, denoted
L1 ≥st L2, if

Pr[L1 ≥ `] ≥ Pr[L2 ≥ `] for all `.

The underlying model is continuous-time, single-item, where demands form a compound Pois-
son process � demands occur at epochs with random batch size. Here we assume the batch
size is 1. An stationary policy is optimal, where the decision variables are the target inventory
levels. (This is called a base-stock policy, and �target� is used when the demand structure is
random.)

Notation:
h unit holding cost rate
p unit shortage cost rate
D lead time demand
Ψ cdf of D
y target inventory level for base-stock policy

Only the holding and penalty costs depend upon lead time demand, so we ignore ordering
costs for purposes of policy comparisons. The expected average cost is: odering cost +

lead time-dependent costs = E[h(y −D)+ + p(D − y)+].

Counterexample. Song[21] provides the following: Pr[L1 = 1] = 1 and Pr[L2 = 1] = 0.7,
Pr[L2 = 0.1] = 0.3. Note that L1 ≥st L2. Let h = 2, p = 9, and the two cdfs:

Ψ1(0) = 0.3679 Ψ1(1) = 0.7358 Ψ1(2) = 0.9197
Ψ2(0) = 0.5290 Ψ2(1) = 0.8137 Ψ2(2) = 0.9437

The optimal target inventory for each lead time is y∗1 = y∗2 = 2. Their costs di�er by

E[h(y −D1)+ + p(D1 − y)+]− E[h(y −D2)+ + p(D2 − y)+] = 3.14− 3.24 < 0.

Hence, the stochastically greater lead time has lower average cost, contrary to the myth.

Song also analyzes the e�ect of more variable lead time (with equal means).
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DP Myth 8. new In a multi-item, base-stock inventory system, the total order �ll rate
cannot exceed the independent �ll rate.

The underlying model is a continuous-time, multi-item inventory system, where items are
consumed by demand types. Demand rates, de�ne a Poisson process, for which a stationary
base-stock policy (see p. 7) minimizes the average cost. An order �ll rate is the probability
of satisfying demand immediately.

The total order �ll rate is given by:

FT =
K∑
k=1

qkfk,

where fk is the type-k �ll rate, and qk is the probability that the demand is of type k. The
independent �ll rate, which is used to approximate FT , assumes all demands are independent
of all other demands:

FI =
n∑
i=1

QiFi,

where Fi is the �ll rate of item i, and Qi is the demand rate for item i. Q is determined by q:

Qi =
1
κ

∑
k∈S(i)

qk,

where S(i) is the set of types that consume item i, and κ =
∑n
i=1

∑
k∈S(i) qk. The myth

asserts FT ≤ FI.

Counterexample. Song[22] provides the following: Let n = 3, all lead times are 1, and the
overall demand rate is 1. Let K = 7 with q = (0.01, 0.01, 0.85, 0.03, 0.01, 0.01, 0.08) and

S(1) = {1, 4, 5, 7}, S(2) = {2, 4, 6, 7}, S(3) = {3, 5, 6, 7}.

Let the base-stock levels be (1, 1, 4). Then, f = (0.878, 0.878, 0.984, 0.861, 0.868, 0.868, 0.858),
so F = (3.465, 3.465, 3.578), which yield the contradiction: FT = 0.965 > FI = 0.961.

DP Myth 9. new Given continuous control over arrival and service rates in a network of
queues, the optimal arrival rate into a queue does not increase with its size.

Weber and Stidham[23] consider a network of m queues in which customers arrive at queue
i in a Poisson stream with rate λi and complete service at a rate µi. The completion may be
rejected, so the customer may remain at the same queue; otherwise, the customer may leave
the system or move to another queue.

The arrival and service rates are subject to continuous control over intervals, [λ, λ] and [µ, µ],
respectively. Service rates incur costs, ci(µi), and arrival rates bring rewards, ri(λi). The
state of the system is s = (s1, . . . , sm) ≥ 0, where si is the number of customers in queue i.
There is a holding (or waiting) cost,

∑m
i=1 hi(si).
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Here is the DP recursion for minimizing the total expected cost:

fn+1(s) =
m∑
i=1

min
λi∈[λi, λi]

µi∈[µ
i
, µi]

(
hi(si) + ci(µi)− ri(λi) + λifn(s+ ei) + µiE[fn(Ti(s, µi))]

)
,

where ei is the i th unit vector and Ti(s, µi) is the new state resulting from completion events
at queue i:

Ti(s, µi) = s− ei if customer leaves system;
Ti(s, µi) = s− ei + ek if customer joins queue k;
Ti(s, µi) = s if customer remains in queue i.

The myth says that an optimal rate satis�es:

λ∗i (s+ ei) ≤ λ∗i (s).

Weber and Stidham[23] call this property transition-monotone, and they prove it holds under
certain assumptions. The intuition is that it is less costly to slow down the entrance of new
arrivals if the queue grows.

Counterexample. Weber and Stidham[23] provide the following:

λ1 ∈ [0, 0.01], λ2 = 0, µ1 = 1, µ2 ∈ [0, 2],
c1 = c2 = 0, r1(λ1) = 0.944λ1,

h1(s1) =
{

0 if s1 = 0, 1, 2
∞ if s1 > 2,

h2(s2) =
{

0 if s2 = 0, 1, 2, 3, 4
∞ if s2 > 4,

An optimal solution has µ∗2(s) = 2 for all s, and

λ∗(s) =
{

0.01 if s ∈ S
0 otherwise,

where S = {(0, 0), (1, 0), (0, 1), (1, 1), (1, 2)}. This violates the myth with s = (0, 2) since

λ∗(1, 2) 6≤ λ∗(0, 2).

DP Background � In�nite Horizon

The in�nite horizon DP has two basic models:

Discounted: Vβ(s, π) = lim
n→∞

V nβ (s, π) for β < 1

Average: A(s, π) = lim
n→∞

V n1 (s, π)
n

,

where
V nβ (s, π) =

∑n
t=1 β

t−1rt(st, πt(st))

π is a policy � that is, a decision rule with πt(st) ∈ Xt(st)

β is the discount factor ∈ [0, 1].
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For the deterministic model, the state transition is given by st+1 = Tt(st, πt(st)). The stochas-
tic transition is given by:

Pr[st+1 = s|st, x] = qt(st, st+1;x) for x ∈ Xt(st).

The stochastic models use the expected returns in the objective, and the current state, st, is
known at the time of the decision, x = πt(st) ∈ Xt(st). This is a Markov decision process
with discrete time.

In words, Vβ is the total discounted return when starting in state s and using policy π; A is
the longterm, undiscounted average return. The former has an optimal solution under mild
assumptions (but see DP Myth 11); the latter is approached under certain circumstances by
letting β→ 1 from below.

The DP recursion for the discounted model is given by:

ft(s) = max
x∈Xt(s)

{
rt(s, x) + β

∑
s′ qt(s, s

′;x)ft+1(s′)
}
.

The deterministic model is included with

qt(s, s′;x) =
{

1 if s′ = Tt(s, x);
0 otherwise.

If the maximum exists for each state, an optimal policy is to let

π∗t (s) ∈ argmax
x∈Xt(s)

{
rt(s, x) + β

∑
s′ qt(s, s

′;x)ft+1(s′)
}
.

In a stationary DP, the recursion may be regarded as value iteration whose limiting function
is the solution to

f(s) = max
x∈X(s)

{
r(s, x) + β

∑
s′ q(s, s

′;x)f(s′)
}
.

The value function, f , is a �xed-point of the mapping, where β < 1 makes it a contractor.

Let V ∗β and A∗ denote suprema values of the discounted and average-return models, respec-
tively. The existence of optimal policies is not guaranteed, especially for the average-return
model, where the limit may not exist. There are several variations of the DP objective for π∗

to be an optimal policy:

B-opt: ∃β̄ ∈ (0, 1) : Vβ(s, π∗) ≥ V ∗β (s) ∀β ∈ (β̄, 1);

nearly optimal: lim
β→ 1−

(
Vβ(s, π∗)− V ∗β (s)

)
= 0;

1-optimal: lim inf
β→ 1−

(
Vβ(s, π∗)− Vβ(s, π)

)
≥ 0 ∀π;

discount ε-optimal: Vβ(s, π∗) ≥ V ∗β (s)− ε for ε > 0;

average ε-optimal: A(s, π∗) ≥ A∗(s)− ε for ε > 0;

liminf average optimal: lim inf
n→∞

1
nV

n
1 (s, π∗) ≥ lim inf

n→∞
1
nV

n
1 (s, π) ∀π;

limsup average optimal: lim sup
n→∞

1
nV

n
1 (s, π∗) ≥ lim sup

n→∞
1
nV

n
1 (s, π) ∀π;

average-overtaking: lim inf
N→∞

1
N

∑N
n=1

(
V n1 (s, π∗)− V n1 (s, π)

)
≥ 0 ∀π.

Each de�ning condition applies to all states, s. (See Lippman[12] and Flynn[8] for succinct
introductions and how the objectives relate to each other.)

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 62
March 10, 2009

12:34pm DP Myths & Counterexamples

The remaining DP Myths pertain to in�nite horizon, stationary DPs.

DP Myth 10. If there is a nearly optimal solution to a discounted DP with a �nite number
of states and decisions, it is an optimal policy.

Blackwell[3] provides the following:

Counterexample. The state space is S = {1, 2}, and the decision sets are X(s) = {1, 2}
for each s ∈ S. The return functions are r(1, x) = x and r(2, x) = 0. The state transition
probabilities are: q(1, 1; 1) = q(1, 2; 1) = 1

2
, q(1, 2; 2) = 1, and q(2, 2;x) = 1.

State transitions for x = 1 State transitions for x = 2

Let πx be any policy for which πx(1) = x for x = 1, 2 Then, starting in state 1:

Vβ(π1) = 1 + 1
2
β + 1

4
β2 + · · · = 2

2− β
Vβ(π2) = 2.

Thus, π2 is an optimal policy for each β, and limβ→ 1− Vβ(π1) = 2. So, π1 is nearly
optimal but not optimal for any β < 1.

DP Myth 11. For the discounted-return DP, there exists an ε-optimal policy for all ε > 0.

Blackwell[4] provides the following:

Counterexample. Let the state space be the unit interval: S = [0, 1]. For each s ∈ S,
the decision set is X(s) = [0, 1], and the state remains unchanged: T (s, x) = s for all
s ∈ S, x ∈ X(s). Let B be a Borel subset of [0, 1]2, and let D be the projection of B on
S. Choose B such that D is not a Borel set, and de�ne the return function:

r(s, x) =
{

1 if (s, x) ∈ B;
0 otherwise.

An optimal policy, π∗, is such that (s, π∗(s)) ∈ B, so the optimal value is Vβ(s, π∗) = 1
1−β .

For any other policy, π, there exists s ∈ D such that r(s, π(s)) = 0, so

Vβ(s, π) ≤ β + β2 + · · · = β

1− β
.

Hence, there is no ε-optimal policy for 0 < ε < 1.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



DP Myths & Counterexamples
March 10, 2009

12:34pm Page 63

DP Myth 12. There exists a stationary policy that is B-opt.

While this is true for �nite decision sets and state space, it fails for non-�nite decision sets.
Maitra[13] proved that �niteness is not necessary if the objective is the discounted model �
that is, Vβ is well de�ned for any particular β ∈ [0, 1). He provided the following for this
myth:

Counterexample. Let the state space be {1, 2 . . . }, and let the decision set be binary:
X = {0, 1}, independent of the state. The returns are r(s, 0) = cs and r(s, 1) = 0;
and, the state transitions are T (s, 0) = s and T (s, 1) = s + 1. Choose cs > 0 such that
{cs} ↑ c <∞ (for example, cs = c− 1

s ).

Note that an advantage of choosing decision 0 is the positive immediate return, and the
advantage of choosing decision 1 is the transition to the next state, which has a greater
immediate return for the next decision. To illustrate, suppose πx(s) = x for all s. Then,
Vβ(1, π1) = 0 and

Vβ(1, π0) =
∞∑
t=1

βt−1c1 =
c1

1− β
.

More generally, suppose π(s) = 0 for all s ∈ S 6= ∅ and π(s) = 1 for s 6∈ S. Then, with
S = {s1, s2, . . . },

Vβ(1, π) =
∞∑
t=1

βt−1cs1 =
1− βs1
1− β

cs1 .

Here is an optimal (stationary) policy for any �xed β:

π(s) =
{

0 if βkcs+k < cs for all k ≥ 1;
1 otherwise.

This de�nes s1 in the above equation for Vβ(1, π) as

s1 = min{s : βkcs+k < cs for all k ≥ 1}.

There is thus an optimal policy for each �xed β ∈ (0, 1). However, there is no B-opt
policy, as Maitra proves by contradiction. Suppose π∗ is B-opt. He �rst proves

lim
β→ 1−

(1− β)Vβ(1, π∗) = c.

An implication of this equation is that π∗(s) selects decision 0 a �nite number of times
when in state s in order to advance to the greater immediate returns that converge to c.

Maitra constructs another policy, π′, that contradicts the optimality of π∗ by showing
Vβ(1, π′) > Vβ(1, π∗) for all β su�ciently close to 1.

Maitra[14] later provided the following:

Counterexample. Let there be just one state, and let the decision set at each time period
be given by X = {1, 2, . . . }. Let the return function be r(x) = 1− 1

x , so there is no optimal
policy.

Thus, non-�nite state or decision sets can result in there being no B-opt policy.
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DP Myth 13. If the average-return DP has an optimal policy, there exists a stationary
policy that is optimal.

Fisher and Ross[6] provide the following:

Counterexample. Let S = {0, 1, 1′, 2, 2′, 3, 3′, . . . , }, X(s) = {1, 2} for s = 1, 2, 3 . . . , and
X(s) = {1} for s = 0, 1′, 2′, 3′, . . . . The return values are r(0, x) = −1 and r(s, x) = 0 for
s 6= 0. The state transition probabilities are:

For s = i > 0: q(0, i; 1) = q(0, i′; 1) = 3
2 ( 1

4
)i

For s = i: q(i, 0; 1) = q(i′, 0, 1) = ( 1
2
)i = 1− q(i, i′; 1) = 1− q(i′, i′; 1)

For s = i: q(i, 0; 2) = q(i, i+ 1; 2) = 1
2

State transitions for x = 1 State transitions for x = 2

Let Mij(π) denote the expected number of periods to reach state j, starting in state i and
following policy π. For example, suppose π always selects decision 2. Then,

M00(π) = 1; for s 6= 0: M0s(π) =∞ and Ms0(π) =
∑∞
j=1 j(

1
2
)j = 2.

Let πm be the policy that selects decision 2 at states 0 < i < m and decision 1 otherwise.
Then,

M00(πm) = 1 +
∞∑
i=1

3
2

( 1
4
)iMi0(πm) +

∞∑
i=1

3
2

( 1
4
)i 2i.

Fisher and Ross derive the fact that M00(πm) < 5 for all m, and limm→∞M00(πm) = 5.

Let π be any stationary policy, and let pi = Pr(x = 1|s = i) de�ne a randomized policy.
Then,

M00(π; p) = 1 +
∞∑
j=1

3
2

( 1
4
)jMj0(πm; p) +

∞∑
j=1

3
2

( 1
4
)j 2j .

Mj0(π; p) =
∞∑
m=j

pm

m−1∏
k=j

(1− pk)Mj0(πm; p) + 2
∞∏
k=j

(1− pk) < (2 + 2j).

Hence, M00(π; p) < 5 for all stationary policies randomized by p. They proceed to con-
struct the following non-stationary policy and prove that it has the optimal value of 5 for
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some {Ni}:

πt(s) =



π1(s) for 0 < t ≤ N1

π2(s) for N1 < t ≤ N1 +N2

...
πm(s) for

∑m−1
i=1 Ni < t ≤

∑m
i=1Ni

...

Ross[19] provides the theory needed to establish this, with application to the replacement
process.

DP Myth 14. There exists an average ε-optimal policy for ε > 0 that is optimal for the
discounted-return model for β su�ciently close to 1.

The intuition is that lim infβ→ 1− Vβ(s, π) = A(s, π), but Ross[19] provides the following:

Counterexample. Let S = {(i, j) : 0 ≤ j ≤ i, i ≥ 1}∪{∞} and X(s) = {1, 2} for s = (i, 0),
X(s) = {1} for s = (i, j > 0),∞. The state transitions are deterministic:

T ((i, 0), 1) = (i+ 1, 0)

T ((i, 0), 2) = (i, 1)

T ((i, j), 1) = (i, j + 1) for 0 < j < i

T ((i, i), 1) =∞ = T (∞, 1).

Starting at state (i, 0), one can move upward (x = 1) to some point, say (i + h, 0), then
go right (x = 2). There is no choice from that point; after reaching the 45◦ line (where
j = i+ h), one jumps to ∞ and stays there.

The immediate returns are r(s, x) = 0, except r((i, 0), x) = 2 and r(∞, x) = 1. Suppose
we start at state (1, 0). Letting π1 be the policy that always selects decision 1, there is no
right turn, so the average return is 2. Otherwise, the average return is 1 (reaching ∞ and
staying there forever).

Letting π be the policy that selects action 2 at state (n, 0) and decision 1 otherwise, we
have:

Vβ((1, 0), π) =
n−1∑
k=0

βk + 2
∞∑

k=2n

βk =
1− βn + 2β2n

1− β

<
1

1− β
for n su�ciently large

= Vβ((1, 0), π1).
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Hence, for β ∈ (0, 1), Vβ((1, 0), π1) 6= V ∗β ((1, 0)). This implies that the discounted-return
model optimum does not approach the optimal average return, so it cannot become average
ε-optimal.

DP Myth 15. If the optimal average-return is �nite, there is an ε-optimal stationary policy
for any ε > 0.

Ross[20] provides the following:

Counterexample. Let the state space be S = {1, 1′, 2, 2′, . . . , i, i′, . . . ,∞}. For each i ∈ S,
the decision set is binary: X(i) = {0, 1}. For each i′ ∈ S, the decision set is a singleton:
X(i′) = {0}. The state-transition probabilities are:

For s = i: q(i, i+ 1; 0) = 1, q(i, i′; 1) = ai = 1− q(i,∞; 1),
For s = i′: q(i′, (i− 1)′; 0) = 1 for i ≥ 2, q(1′, 1; 0) = 1,
For s =∞: q(∞;∞, s) = 1 for all s ∈ S,

where ai satisfy: 0 < ai < 1 and
∏∞
i=1 ai = 3

4
.

State transitions for x = 0 State transitions for x = 1

The returns are r(i, x) = 2 and r(i′, x) = 0 for all i, i′ ∈ S and all x.

Let the initial state be s = 1. Then, every stationary policy has a return of 2 in all but a
�nite number of time periods. This implies (by the bounded convergence theorem) that
the average expected return is 2.

Let π be a (non-stationary) policy such that:

π1(1) = 1
πt(1′) = 0 for t = 2, . . . , T

πT+1(1′) = 1.

The average return equals:

2 with probability 1−
∏∞
i=1 ai = 1

4

1 with probability
∏∞
i=1 ai = 3

4
.

Hence, the expected average return is 1
2

+ 3
4

= 5
4 , so there is no ε-optimal stationary policy

for ε < 3
4
.
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DP Myth 16. If a policy is B-opt, it optimizes the average return.

Flynn[7] proved this for �nite state spaces and provides the following for a non-�nite state
space:

Counterexample. Let {sj}∞j=1 be a real sequence such that

s∗
def= lim inf

β→ 1−
(1− β)

∞∑
j=1

βj−1sj > lim inf
n→∞

∑n
j=1 sj

n

def= s∗.

(Flynn establishes existence by an earlier theorem.) Let the state space be {0, s1, s2, . . . }.
The decision sets are binary, independent of the state: X(s) = {0, 1} for all s. The state
transition functions are deterministic: T (sj , x) = sj+1, T (0, 0) = 0, and T (0, 1) = s1. The
immediate returns are independent of the decision: r(sj , x) = sj and r(0, x) = 1

3
(s∗+2s∗).

Let πx denote a policy that always selects x ∈ {0, 1}. We have Vβ(s, π1) = Vβ(s, π) for
s 6= 0. For π(0) = 0,

(1− β)Vβ(0, π) = 1
3
(s∗ + 2s∗) < s∗ = (1− β)

∞∑
j=1

βj−1sj = (1− β)Vβ(0, π1).

Hence, Vβ(0, π) < Vβ(0, π1), so π1 is B-opt. However, we also have

A(0, π0) = 1
3
(s∗ + 2s∗) > s∗ = A(0, π1),

so π1 does not maximize the average return, starting in state 0.

DP Myth 17. If a stationary policy is B-opt, it is average-overtaking.

This is true for �nite state spaces, and Flynn[8] provides the following:

Counterexample. Let S = {0, 1, . . . ,∞} and X(s) = {0, 1} for all s ∈ S. State transitions
are stochastic only for s = 0 and x = 0: q(0, 0; 0) = q(∞, 0; 0) = 1

2
. Otherwise, the

transition is deterministic: T (0, 1) = 1 and T (s, x) = s + 1 for all s > 0, x ∈ X(s) (note:
T (∞, x) =∞).

State transitions for x = 0 State transitions for x = 1

Flynn establishes the existence of a sequence {aj}∞j=1 that satis�es:

lim inf
N→∞

1
N

N∑
n=1

n∑
j=1

aj = −1 (DP.4)

lim inf
β→ 1−

∞∑
j=1

βj−1aj = lim sup
N→∞

1
N

N∑
n=1

n∑
j=1

aj = 0 (DP.5)
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Using this sequence, the returns are de�ned as: r(s, x) = as+1 for s > 0; r(0, 1) = a1,
r(0, 0) = − 1

4
, and r(∞, x) = 0.

Let πx denote the policy that always selects x. A B-opt policy is π1 because V ∗β (s) =
Vβ(s, π1) for all s. (For s = 0, Vβ(0, π1) = 0 from (DP.5), whereas if π∗(0) = 0, Vβ(0, π∗) =
− 1/4

1−β .) However, π1 is not average-overtaking because the de�ning inequality fails for

s = 0:

lim inf
N→∞

1
N

N∑
n=1

n∑
j=1

(
V n1 (0, π1)− V n1 (0, π0)

)
= lim inf

N→∞

1
N

N∑
n=1

n∑
j=1

aj + 1
2

= − 1
2
.

The last step uses (DP.4).

DP Myth 18. Every stationary, 1-optimal policy is average-overtaking.

Flynn[8] establishes this for �nite state spaces and provides the following:

Counterexample. Let S = {0, 1, 2, . . . } and X(s) = {0, 1} for all s ∈ S. The state transi-
tions are deterministic: T (0, 0) = 0, T (0, 1) = 1, T (s, x) = s+ 1 for s > 0.

State transitions for x = 0 State transitions for x = 1

The immediate returns are r(0, 0) = 0, r(0, 1) = a1, and r(s, x) = as+1 for s > 0.

Let πx denote the policy that selects x each time. Flynn proves that π0 is both 1-optimal
and average-overtaking, whereas π1 is 1-optimal but not average-overtaking.

For s > 0, Vβ(s, π0) = Vβ(s, π1) = Vβ(s, π)∀π, so the de�ning inequality for 1-optimal
is valid. Now consider s = 0. If π∗(0) = 0, Vβ(s, π0) = Vβ(s, π),∀π and π0 is optimal.
Otherwise, applying (DP.5), we have:

lim
β→ 1−

(
Vβ(0, π0)− Vβ(0, π)

)
= − lim

β→ 1−

∞∑
j=1

βj−1aj = 0.

Hence, π0 is 1-optimal. Similarly, if π∗(0) = 1, Vβ(s, π1) = Vβ(s, π) and π1 is optimal.
Otherwise, we have:

lim
β→ 1−

(
Vβ(0, π1)− Vβ(0, π)

)
= lim
β→ 1−

∞∑
j=1

βj−1aj = 0.

Hence, π1 is 1-optimal.

For any policy, π, V n1 (s, π) = V n1 (s, π0) = V n1 (s, π1) for s > 0. Consider s = 0. If π(0) = 0,
π1 is not average-overtaking because (DP.4) yields:

lim inf
N→∞

1
N

N∑
n=1

(
V n1 (0, π1)− V n1 (0, π)

)
= −1.
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Whereas, if π(0) = 1,

lim inf
N→∞

1
N

N∑
n=1

(
V n1 (0, π0)− V n1 (0, π)

)
= 1,

so π0 is average-overtaking.

DP Myth 19. If a policy is both B-opt and average-overtaking, it is liminf average optimal.

The assertion is true for �nite state spaces, and Flynn[8] provides the following:

Counterexample. Let the state space, decision sets, and state transition functions be the
same as in DP Myth 18, but with returns: r(0, x) = 0 and r(s, x) = vs for s > 0, where
Flynn establishes the existence of {vj}∞j=1 that satis�es:

lim
N→∞

1
N

N∑
n=1

n∑
j=1

vj =∞, lim inf
n→∞

1
n

n∑
j=1

vj < 0. (DP.6)

Let πx denote the policy that always selects decision x. π1 is average-overtaking because
∀π:

s > 0 → V n1 (s, π1) = V n1 (s, π)

s = 0, π(0) = 1 → V n1 (0, π1) = V n1 (0, π)

s = 0, π(0) = 0 → V n1 (0, π) = 0 and V n1 (0, π1) =
n∑
j=1

vj > 0 for n su�ciently large.

Further, π1 is B-opt because ∀π:

lim inf
N→∞

1
N

N∑
n=1

V n1 (s, π) ≤ lim inf
β→ 1−

Vβ(s, π) ≤ lim sup
β→ 1−

Vβ(s, π) ≤ lim sup
N→∞

1
N

N∑
n=1

V n1 (s, π).

However, π1 is not liminf average optimal because (DP.6) yields:

lim inf
n→∞

1
n
V n1 (0, π1) = lim inf

n→∞

1
n

n∑
j=1

vj < 0 = lim inf
n→∞

1
n
V n1 (0, π0).

DP Myth 20. If a policy is both B-opt and average-overtaking, it is limsup average optimal.

The assertion is true for �nite state spaces, and Flynn[8] provides the following:

Counterexample. Let the state space, decision sets, and state transition functions be the
same as in DP Myth 19, but with returns: r(0, x) = 0 and r(s, x) = −vs for s > 0,
satisfying (DP.6). Using a similar proof, π0 is both B-opt and average-overtaking, but it
is not limsup average optimal because:

lim sup
n→∞

1
n
V n1 (0, π0) = 0 < − lim inf

n→∞

1
n

n∑
j=1

vj = lim sup
n→∞

1
n

n∑
j=1

−vj = lim sup
n→∞

1
n
V n1 (0, π1).
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DP Myth 21. If a policy is B-opt among stationary policies, it optimizes the average return
among stationary policies.

Flynn[8] establishes this for �nite state spaces and provides the following:

Counterexample. Let S = {0, 1, . . . ,∞} and X(s) = {0, 1} for all s ∈ S. State transi-
tions are: q(∞,∞;x) = q(0, 0; 1) = 1, q(0, 1; 1) = q(0,∞; 1) = 1

2
, and q(s, s + 1;x) =

q(s,∞;x) = 1
2
for s > 0.

State transitions for x = 0 State transitions for x = 1

Letting {vj} satisfy (DP.6), de�ne the returns independent of the decisions: r(0, x) =
r(∞, x) = 0 and r(s, x) = −2svs for s > 0 (s 6=∞).

Under any stationary policy, the system is absorbed in state ∞ with probability 1. Fol-
lowing the same arguments as in the counterexample to DP Myth 19, Flynn proves π0 is
B-opt, but not limsup average optimal.

DP Myth 22. If a policy is average-overtaking among stationary policies, it optimizes the
average return among stationary policies.

Flynn[8] establishes this for �nite state spaces and provides the following:

Counterexample. Let S = {0, 1, . . . ,∞} and X(s) = {0, 1} for all s ∈ S. State transi-
tion functions are as in DP Myth 21, but the immediate returns are r(s, x) = 2s+1as+1,
r(∞, x) = 0, r(0, 0) = − 1

4
, and r(0, 1) = 2a1, where {aj} satis�es (DP.4). Using the same

arguments as in DP Myth 17, π1 is B-opt, but not average-overtaking.

DP Myth 23. We can approximate an in�nite horizon Markov decision process with a
su�ciently long, �nite horizon.

Hinderer[10] �rst raised this issue for both discounted and average return models. Flynn[9]

provides the following:

Counterexample. Let S = {0, 0′, 1, 1′, 2, 2′, . . . } and X(s) = {0, 1, 2} for all s ∈ S. The
state transitions are deterministic: T (s, 0) = 0, T (s, 1) = s + 1, T (s, 2) = s′, T (s′, x) =
(s− 1)′ for s = 1, 2, . . . .
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The immediate returns are r(0, x), r(s, x) = −1 for s = 0′, 1, 2, . . . , and r(s, x) = 3 for
s = 1′, 2′, . . .

Let π0 be the policy of always selecting x = 0, and note that the in�nite horizon solution
is π0 with A∗(s) = 0 for all s. Let xN be an optimal policy for N time periods, and let
m =

⌊
N
2

⌋
. Then,

xN (s) =
{

1 if s ≤ m;
2 if s > m.

So, starting in state 1, we have V N1 (1, xN ) = N if N is even, and V N1 (1, xN ) = N + 2 if
N is odd.

Optimal State and Return Sequences for N -period Horizon

Consider xN as a �nite approximation for the in�nite horizon. As N becomes large,
{V N1 (1, xN ) − V N1 (1, π0)} ↑ ∞, so xN is a poor approximation. From the other view, π0

becomes increasingly less desirable as an approximation to the N -horizon DP as N→∞.
Moreover, the average return for the N -horizon approaches 1, whereas the average return
for the in�nite horizon DP is 0.

DP Myth 24. A discounted-return stationary DP with �nite decision space for each state
has a pure, stationary policy that is optimal.

Hordijk and Tijms[11] provide the following:

Counterexample. Let the state space be given by the denumerable set, S = {1, 1′, 2, 2′, . . . }.

Let the decision sets beX(s) = {1, 2} for s = 1, 2, . . .
and X(s) = {1} for s = 1′, 2′, . . . Let the state tran-
sitions be T (i, 1) = i+1 and T (i, 2) = T (i′, 1) = i′ for
i = 1, 2, . . . The immediate returns are r(s, 1) = 0
for all s and r(i, 2) = β−i

(
1− 1

i

)
for i = 1, 2, . . .

State Transitions
There are two pure, stationary policies:

π1(s) = 1 and π1(s ′) = 1

π2(s) = 2 and π2(s ′) = 1
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Then,
Vβ(s, π1) = 0 for all s
Vβ(i, π2) = β−i

(
1− 1

i

)
and Vβ(i ′, π2) = 0 for i = 1, 2, . . .

π2 is optimal among pure, stationary policies, and Vβ(i, π2) < β−i for all i = 1, 2 . . .

Now consider the following randomized policy: Pi(t) = probability that πt(i) = 1 when
the system is in state i at time t. Suppose Pi(t) < 1 for at least one t. Then,

Vβ(i, π) =
∞∑
t=0

βt(1− Pi(t))β−(i+t)
t−1∏
n=0

Pi(n)
(

1− 1
i+ t

)
.

This yields

Vβ(i, π) = β−i
∞∑
t=0

βt(1− Pi(t))
t−1∏
n=0

Pi(n)
(

1− 1
i+ t

)
.

Using the identity
∞∑
t=0

βt(1− Pi(t))
t−1∏
n=0

Pi(n) = 1−
∞∏
t=0

Pi(t),

we obtain
Vβ(i, π) < β−i.

Consider the policy with

π(i) = 1 for i = 1, . . . ,m− 1 and π(i) = 2 for i = m,m+ 1, . . .

Then, Vβ(i, π) = β−i
(
1− 1

m

)
for all i ≥ 1. Letting m→∞, we see that

sup
π
Vβ(i, π) = β−i.

Thus, the supremum cannot be achieved (�nitely), so there is no optimal policy.

DP Myth 25. new Denardo's policy improvement algorithm computes a 1-optimal policy.

Counterexample. O'Sullivan[17, Appendix A] provides the following: Let S = {1, 2, 3, 4},
X(1) = X(2) = {a, b}, and X(3) = X(4) = {a}. The state transitions are determin-
istic:

T (1, a) = 2 r(1, a) = −2
T (1, b) = 3 r(1, b) = −3
T (2, a) = 1 r(2, a) = 2
T (2, b) = 4 r(2, b) = 1
T (3, a) = 4 r(3, a) = 4
T (4, a) = 3 r(4, a) = −4

The only 1-optimal policy is πa = (a, a, a, a) because

lim inf
β→ 1−

(
Vβ(s, πa)− Vβ(s, π)

)
=

{
2

1+β − 1 > 0 if π(s) = b and s = 1, 2

0 otherwise.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



DP Myths & Counterexamples
March 10, 2009

12:34pm Page 73

Starting with π0 = (b, b, a, a), the algorithm computes a solution to Q0v1 = v0, where
Q0 = P (π0)− I (P (π0) is the state transition probability matrix using policy π0), and

v0 = lim
β→ 1−

Vβ(•, π0) = lim
β→ 1−


−3 + 4β

1+β

1 + 4β
1+β

4β
1+β

− 4β
1+β

 =


−1

3

2

−2

 .

Such a solution is given by v1 = (1, −1, 0, 2)T:
−1 0 1 0

0 −1 0 1
0 0 −1 1
0 0 1 −1




1
−1

0
2

 =


−1

3
2
−2

 .

Then, π is the unique solution to the associated maximum-reward-rate problem. Finally,
the algorithm seeks a policy that is transient on states where π is transient � in particular,
states 1 and 2. This means π(s) 6= a because states 1 and 2 are recurrent under a.
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Nonlinear Programming

A nonlinear program (NLP) has the general form:

max f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0,

where ∅ 6= X ⊆ �n, f : X→�, g : X→�m, h : X→�M . This is the most general form with
no restrictions on the domain (X) or the nature of the functions, except to have at least one
of the functions be nonlinear. Historically, the domain is a simple convex set, like all of �n or
�n+. If the functions are di�erentiable, methods of calculus are used to establish optimality
conditions and provide a foundation for algorithm design.

We refer to some special NLPs:

Convex (CP). X is closed and convex, f is concave, g is convex, and h is a�ne.

Quadratic (QP). max xTQx+ cx : Ax ≤ b.
Typically, Q is assumed to be symmetric, but this is no restriction because the same
quadratic form results upon replacing Q with 1

2
(Q+QT).
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NLP Myth 1. If f has continuous n th-order derivatives, local behavior of f can be approx-
imated by Taylor's series:

f(x+ th) = f(x) + t∇f(x)h+ 1
2
t2hT∇2f(x)h+ . . . ,

where h is a vector with ||h|| = 1, t is a scalar, ∇f(x) is the gradient of f , and ∇2f(x) is the
hessian of f .

The reason this is not correct is that, although Taylor's series might converge under the stated
assumptions, it need not be to the correct value.

Counterexample. Let f(x) = e−
1
x2 for x 6= 0, and f(0) = 0 (x is a scalar). It can be shown

that f is in�nitely di�erentiable everywhere. At x = 0, the n th derivative is 0 for all n.
Thus, the Taylor series converges to 0, which gives the approximation, f(t) = 0 (with
h = 1) for all t. This is incorrect for t 6= 0.

This myth is used all too often in textbooks. The correct assumption is that f is analytic.
Then, by de�nition, the Taylor's series does converge to the correct value of the function, so
it can be used for approximation when proving theorems � viz., that necessary conditions
for x to be an unconstrained minimum are: ∇f(x) = 0 and hT∇2f(x)h ≥ 0 for all h.

NLP Myth 2. Given di�erentiable functions, an optimal point must satisfy the Lagrange
Multiplier Rule.

We are given
NLP: max f(x) : x ∈ �n, g(x) ≤ 0, h(x) = 0,

where f, g, h are di�erentiable functions on �n. For just equality constraints (g vacuous), the
Lagrange Multiplier Rule (LMR) states: x∗ is optimal only if there exists λ such that:

∇f(x∗)− λ∇h(x∗) = 0.

Counterexample. Consider max −x : x3 − y2 = 0. The optimum is at (x∗, y∗) = (0, 0).
The LMR requires −1− λ 0 = 0 for some λ, which is impossible.

cusp: h(x, y) = x3 − y2

The LMR for equality constraints is valid with the constraint quali�cation: ∇h(x∗) has full
row rank. This is what Lagrange assumed, using the Implicit Function Theorem to prove the
necessity of the LMR. (A�ne functions need no constraint quali�cation.)

One extension of the LMR to include inequality constraints is simple: there exists λ, µ such
that:

µ ≥ 0, µi > 0→ gi(x∗) = 0
∇f(x∗)− µ∇g(x∗)− λ∇h(x∗) = 0
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The extended Lagrange constraint quali�cation is simply

rank
([
∇gA(x∗)
∇h(x∗)

])
= |A|+M,

where A is the set of active constraints among the inequalities � that is, A = {i : gi(x∗) = 0}
� and M is the number of equality constraints.

The classical extension and deeper meaning into saddlepoint equivalence by Kuhn and Tucker[28]

gave a weaker constraint quali�cation, but it is violated by the following:

Counterexample. max x : x ≥ 0, y − (1− x)3 ≤ 0, −y ≤ 0. The solution is at (1, 0). The
LMR requires (µ1, µ2) ≥ 0 to satisfy:

1− µ1 3(1− x)2 = 0
−µ1 + µ2 = 0

The �rst equation is impossible at (1, 0).

Here is another counterexample with g convex: max x : x2 ≤ 0.

NLP Myth 3. A point that satis�es the Lagrange multiplier necessary conditions is a local
optimum.

Most people know this is a myth because the Lagrange (a.k.a., Kuhn-Tucker-Karush) con-
ditions hold at stationary points that are not minima or maxima (for example, at a saddle
point). This is included here, however, because it appears too often in textbooks and even
some research articles. Those not expert in mathematical programming are told that an al-
gorithm converges to a local optimum when, in fact, it converges to a point that satis�es the
Lagrange multiplier conditions. (Methods of descent can rule out converging to a �pessimal�
solution � that is, to a max when seeking a min � if it moves from its initial point.)

Counterexample. min x2 − y2 : −1 <= x, y <= 1. A Lagrange point is at (x, y) = (0, 0)
with all four multipliers = 0, but this is not a local min (or max) of the NLP. It is a
saddlepoint.

NLP Myth 4. Suppose f is analytic and x is a minimum of f . Then, ∇f(x) = 0, and if
hT∇2f(x)h = 0 for all h, it is necessary that all terms of the third derivative shall vanish. In
that case, if the fourth-order term is positive, the point is a minimum.

This is a classical error, made by the great Lagrange. A complete discussion is given by
Hancock[25]. (Qi[35] provides a quali�cation that makes an �extended Lagrange claim� valid.)

The proposition is a natural extension of the (correct) result for one variable: the �rst non-
vanishing derivative must be of even order; and, it is positive for a minimum and negative for
a maximum. For two variables, however, we have a problem with the ambiguous case.

For notational convenience, translate the solution to the origin, and suppose f(0) = 0. Then,
Taylor's expansion is:

f(h, k) = 1
2
(Ah2 + 2Bhk + Ck2) + 3rd-order terms,
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where the quadratic form coe�cients (A,B,C) are the associated second partial derivatives
of f , evaluated at (0,0). When B2 − 4AC > 0, the origin is a proper (local) minimum;
when B2 − 4AC < 0, the origin is a proper (local) maximum. The ambiguous case, when
B2 − 4AC = 0, is at issue. Here is where Lagrange claimed the 3rd-order term must vanish,
and that the sign of the 4th-order term (if it does not vanish) can then determine whether the
point is a (local) minimum or a maximum. The following is a special case of a counterexample
found by Peano.

Counterexample. f(x, y) = (y − x2)(y − 2x2). We have �rst derivatives: fx = −6xy + 8x3

and fy = 2y − 3x2. These vanish at (0,0), so we proceed to the second derivatives:

∇2f(x, y) =
[
−6y + 24x2 −6x
−6x 2

]
=
[

0 0
0 2

]
at (0, 0).

This is the ambiguous case, where the hessian is positive semi-de�nite at the origin. Let
the change in the y-direction be zero, and let the change in x be t, so the quadratic form
is (t, 0)∇2f(0)(t, 0)T = 0 for all t. We proceed to third derivatives, but since we maintain
no change in the y-direction, we need to compute derivatives of only x:

fBen−AyedBlair90x = 48x and fBen−AyedBlair90Ben−AyedBlair90 = 48,

so f(t, 0) = 48t4 > 0 for all t. According to the myth, this implies f achieves a minimum
at (0, 0); however, consider y = 3/2 x

2. Along this parabola, f(x, y) = − 1/4 x
4, which is

negative for x 6= 0. Thus, (0, 0) is not a local minimum of f .

NLP Myth 5. Given min{f(x, y) = g(x) + h(y) : ay = g(x)}, we can equivalently solve
min{ay + h(y)}.

Counterexample. The following is given by Bloom[4]. Determine the shortest distance from
the point (0, 5) to the parabola de�ned by 16y = x2. Using the square distance as the
objective function, our problem is:

min x2 + (y − 5)2 : 16y = x2.

Substituting x2, the unconstrained �equivalent� is given by:

min 16y + (y − 5)2.

The only critical point (where f ′ = 0) is at y = −3. However, this produces an imaginary
value of x, so the minimum does not exist. The problem is that we cannot simply replace
x2 with 16y; we must divide the problem into the cases: x ≥ 0 and x ≤ 0.

The Lagrange Multiplier rule does not run into any problem. The Lagrange conditions for
the original problem are:

2x+ λ2x = 0, 2(y − 5)− 16λ = 0, and 16y = x2.

With x = 0 we obtain y = 0⇒λ = − 5
8 . With x 6= 0, we obtain λ = −1⇒ y = −3⇒

contradiction. Hence, the minimum is at (0, 0).
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NLP Myth 6. new A smooth surface with one critical point that is a local, but not a global,
minimum must have a second critical point.

Let the surface be given by (x, y, f(x, y)) for x, y ∈ �. De�ne �smooth� as f is in�nitely
di�erentiable. The intuition stems from the fact that the statement is true in one variable.

Counterexample. Ash and Sexton[3] provide the following:

f(x, y) = − 1
1 + x2

+ (2y2 − y4)
(
ex +

1
1 + x2

)
.

The origin is a local, but not a global, minimum with

∇f(0, 0) = (0, 0), ∇2f(0, 0) =
[
2 0
0 8

]
, f(0, 0) = −1 > f(0, 2) = −17.

There are no other critical points.

NLP Myth 7. If f is continuous, the closure of its strict interior equals its level set. That
is, cl{x : f(x) < 0} = {x : f(x) ≤ 0}.

One importance of this in stability � see NLP Myth 8.

Counterexample. Let f be the following function on �:

f(x) =

 0 if x < 0
(x− 1)2 − 1 if 0 ≤ x < 2

0 if 2 ≤ x

f is continuous (and quasiconvex). However, the strict interior of the 0-level set is (0, 2),
so its closure is only [0, 2]. We lose the �at portions in the tails.

NLP Background � Semi-continuity

Some myths involve continuity properties of the optimal value as a function of the right-
hand side. This requires us to consider the feasibility region a point-to-set map, as follows.
Let X(b) = {x ∈ X : g(x) ≤ b} denote the feasible region, and let B = {b : X(b) 6= ∅}.
The optimal value function is f∗(b) = sup{f(x) : x ∈ X(b)}, and the optimality region is
X∗(b) = {x ∈ X(b) : f(x) = f∗(b)}. Unless stated otherwise, we are interested in continuity
properties at b = 0, and we assume 0 ∈ B.

The optimal value function is lower semi-continuous (lsc) at b = 0 if

lim inf
b→ 0

f∗(b) ≥ f∗(0).
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The optimal value function is upper semi-continuous (usc) at b = 0 if

lim sup
b→ 0

f∗(b) ≤ f∗(0).

The optimal value function is continuous if it is both lsc and usc.

The neighborhood of a set S ⊆ �n is given by:

Nε(S) = {y ∈ �n : ||y − x|| ≤ ε for some x ∈ S},

where ε > 0 and ||•|| is any norm of interest.

A point-to-set map S(b) is lower semi-continuous (lsc) at b = 0 if for bk→ 0 and ε > 0

∃K 3 S(0) ⊂ Nε(S(bk)) for k > K.

S(b) is upper semi-continuous (usc) at b = 0 if for bk→ 0 and ε > 0

∃K 3 S(bk) ⊂ Nε(S(0)) for k > K.

NLP Myth 8. Given the objective is continuous and the feasible region is non-empty and
compact at b = 0, the optimal value function is lsc at b = 0.

Evans and Gould[10] provide the following:

Counterexample. max x : g(x) ≤ 0, where g is given by:

g(x) =

 x3 if x ≤ 0
0 if 0 ≤ x ≤ 1
(x− 1)3 if x ≥ 1.

Then, for bk = − 1
k3 , we have f∗(bk) = − 1

k → 0, but f∗(0) = 1. The key to this disconti-

nuity is that cl{x : g(x) < 0} 6= {x : g(x) ≤ 0}.

NLP Myth 9. Given the objective is continuous and the feasible region is non-empty and
compact at b = 0, the optimal value function is usc at b = 0.

Evans and Gould[10] provide the following:

Counterexample. max x : g(x) ≤ 0, where g has the following shape:
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Then, for bk = g(k), we have f∗(bk) = k→∞, but f∗(0) = 1. The key to this discontinuity
is that {x : g(x) ≤ b} is unbounded for all b > 0 (even though {x : g(x) ≤ 0} is bounded).

NLP Myth 10. If the feasibility region and optimal value function are lsc at b = 0, so is the
optimality region.

Greenberg and Pierskalla[21] provide the following:

Counterexample. Consider max x : g(x) ≤ 0, where g is given in NLP Myth 9. Speci�cally,
let g(x) = min{x2 − 1, e−x

2} (they cross at about x = ±1.3). We have

X(b) =


[−
√
b+ 1,

√
b+ 1 ] if − 1 < b < 0;

[−1, 1 ] if b = 0;
[−
√
b+ 1,

√
b+ 1 ] ∪ [

√
− ln b,∞

)
if 1 > b > 0.

We have(
− 1 ≥ −

√
b+ 1− ε and 1 ≤

√
b+ 1 + ε

)
↔ 1− ε ≤

√
b+ 1↔ b ≥ ε2−2 ε .

Hence, for any ε > 0, let b ≥ ε2−2 ε to have X(0) ⊂ Nε(X(b)). This proves that X is lsc
at b = 0. Further,

f∗(b) =


√
b+ 1 if − 1 < b < 0;
1 if b = 0;
∞ if 1 > b > 0.

Hence, lim infb→ 0 f
∗(b) = 1 = f∗(0), so f∗ is lsc at b = 0.

Now consider the optimality region:

X∗(b) =


{
√
b+ 1} if − 1 < b < 0;

{1} if b = 0;
∅ if 1 > b > 0.

Let bk = e−k, so X∗(bk) = ∅ for all k. Then,

X∗(0) = {1} 6⊂ Nε(X∗(bk)) = ∅,

so X∗ is not lsc at b = 0.

Also see Dantzig, Folkman, and Shapiro[7].

NLP Myth 11. If the feasibility region and optimal value function are usc at b = 0, so is
the optimality region.

Greenberg and Pierskalla[21] provide the following:

Counterexample. Consider max x : g(x) ≤ 0, where g is given in NLP Myth 8. We have

X(b) =

 (−∞, 3
√
b ] if b < 0;

(−∞, 1] if b = 0;
(−∞, 1 + 3

√
b ] if b > 0.
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Since Nε(X(0)) = (−∞, 1 + ε], we have

X(b) ⊂ Nε(X(0)) for b ≤ ε3 .

Hence, X is usc at b = 0. Further,

f∗(b) =


3
√
b if b < 0;

1 if b = 0;
1 + 3
√
b if b > 0.

Hence,
lim sup
b→ 0

f∗(b) = 1 = f∗(0),

so f∗ is usc at b = 0.

Now consider the optimality region:

X∗(b) =

 {
3
√
b} if b < 0;

{1} if b = 0;
{1 + 3

√
b} if b > 0.

We have Nε(X∗(0)) = [1 − ε, 1 + ε]. Let b ↑ 0, so X∗(b) = { 3
√
b} 6⊂ Nε(X∗(0)) for ε < 1.

Hence, X∗ is not usc at b = 0.

Also see Dantzig, Folkman, and Shapiro[7].

NLP Myth 12. A set is convex if it contains the midpoint of any pair of its points.

Counterexample. The set of rational values.

NLP Myth 13. A convex function is continuous.

This is true in the interior of its e�ective domain, but not necessarily on its boundary.

Counterexample. Let f : �+→�, with f(0) = 1 and f(x) = x if x > 0.
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NLP Myth 14. A convex function is upper semi-continuous on its boundary.

Fenchel[12, 13] shows that lim infy→ x f(y) ≤ f(x), and his example, which follows, shows f
need not be upper semi-continuous on the boundary.

Counterexample. Consider the following:

X = {x ∈ �2 : x2 > 0 ∨ x = (0, 0)}

f(x) =


x2

1 + x2
2

2x2
if x2 > 0;

1 if x = (0, 0).
No points on x1-axis, except (0, 0).

f is convex on X and lim infy→(0,0) f(y) = 0. By letting xk take the nonlinear path such
that xk2 = (xk1)3 = 1

k ,

lim sup
y→(0,0)

f(y) = lim
k→∞

f(xk) = lim
k→∞

(xk1)2 + (xk1)6)
2(xk1)3

= lim
k→∞

(
k

2
+

1
2k3

)
=∞.

NLP Myth 15. Suppose x∗ ∈ argmax{f(x) : x ∈ X, g(x) ≤ 0} and g(x∗) < 0. Then,
x∗ ∈ argmax{f(x) : x ∈ X, g(x) ≤ b} for any b > 0.

This is true if f is concave and g is convex on X, in which case x∗ is the (unconstrained)
maximum of f on X.

Counterexample. maxx1 + 2x2 : x1, x2 ∈ {x : x(1− x) = 1}, 2x1 + 4x2 − 3 ≤ b.
At b = 0, x∗ = (1, 0) and g(x∗) < 0; however, at b = 4, the optimal solution is x∗ = (0, 1),
which is not optimal for b = 0.

Other examples, which are not integer-valued, include the case where x0 is a global maximum
for b = 0, but it is only a local maximum for b > 0. The objective function (f) decreases for
a while, but then it turns back upward to a maximum at x∗ > x0 with f(x∗) > f(x0).

NLP Myth 16. new Cauchy's steepest ascent either diverges or converges to a relative
maximum.

We seek to maximize f(x), and the iterations are:

xk+1 = xk + sk∇ f(xk), where sk > 0.

Wolfe[39] presented an insightful analysis, but he later corrected some statements that seemed
intuitive at �rst, such as this Myth.

Counterexample. Wolfe[40] provides the following: f(x, y) = − 1
3
x3− 1

2
y2, which is concave

for x > 0. Starting at (x0, y0) such that 0 < x0 < 1, the sequence satis�es 0 < xk < 1
for all k. Moreover, {(xk, yk)}→(0, 0), which is not a relative maximum. Wolfe discusses
this further, giving more insight into underlying behavior when studying the di�erential
equation ẋ = ∇f(x).
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NLP Myth 17. If f is concave on [a, b], the truncated gradient algorithm converges to an
optimal solution. That is, x′ = x+ sd yields a sequence for which d = 0 in the limit, where d
is the projected steepest ascent direction:

dj =



∂f(x)
∂xj

if aj < xj < bj

max
{

0,
∂f(x)
∂xj

}
if aj = xj

min
{

0,
∂f(x)
∂xj

}
if xj = bj .

Note: d = 0 if, and only if, x satis�es the �rst-order optimality conditions, which is equivalent
to x being optimal in the case of a concave maximand. If d 6= 0, s ∈ argmaxt>0{f(x+ td)}.

Wolfe[41] provided the following:

Counterexample. Let f(x, y, z) = − 4
3 (x2 − xy + y2)

3
4 + z, on the cube, [0, 100]3. It can

be shown (non-trivially) that f is concave, and that the truncated gradient algorithm
converges to the non-optimal point, (0, 0, c), where c < 100, depending on the starting
point (in particular, c = 0 for z0 = 0.1). See Dussault and Fournier[9] and Greenberg[19]

for some details.

The basic problem is that the zig-zagging can cause non-�nite convergence on some face, but
the optimum lies on another face.

NLP Myth 18. new Rosen's projected gradient algorithm with linear constraints converges
to a Kuhn-Tucker point with inexact line search.

The NLP is max f(x) : Ax ≤ b, where f is continuously di�erentiable. The active set of
constraints is denoted I(x) = {i : Ai•x = bi}, and AI(x) is the submatrix whose rows are I(x).
At a general iteration, Rosen's projected gradient method is to set the (feasible) direction:
d(x) = P (x)∇ f(x), where P (x) is the projection matrix onto the active face:

P (x) = I −A
T

I(x)

[
AI(x)A

T

I(x)

]−1
AI(x).

If d(xk) = 0, the �rst-order (Lagrangian) conditions are satis�ed, and the algorithm termi-
nates. If d(xk) 6= 0 and Ai•d(xk) ≤ 0 for all i 6∈ I(xk), the problem is unbounded, and
the algorithm terminates. Otherwise, let I(x) = {i 6∈ I(xk) : Ai•d(xk) > 0} (6= ∅), and

s = min
i∈I(xk)

bi −Ai•xk

Ai•d(xk)
. Then, the iteration is given by:

xk+1 = xk + skd(xk),

where sk is the step size, limited by 0 ≤ sk ≤ s. An inexact line search is specifying sk
without optimizing along the direction, such as using Armijo's rule[1] (See NLP Myth 30.)
Also, successive directions are not orthogonal, so the zig-zag phenomenon does not apply, as
in NLP Myth 17.
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Counterexample. Hu[26] provides the following:

max −x2
1 + x2

2 : x ≥ 0, x1 − x2 ≤ 1.

The step size is determined by a near-optimal line search:

f(xk + skd(xk)) ≥ max
0<s≤s

{f(xk + sd(xk))} − εk,

where εk = 21−k. Starting at x0 = (2, 1), Hu's inexact line search generates the sequence
{xk} = {(1 + 2−k, 2−k)}→(1, 0) (with I(xk) = {3}, d(xk) = (−xk1 + xk2 ,−xk1 + xk2) =
(−1,−1), and sk = 21−k). The optimal step size is s∗ = s = 2−k, so

f(xk + skd(xk))− f(xk + s∗d(xk)) = −(1 + 21−k) − (−1) = −21−k = − εk .

This dispels the myth because the only Kuhn-Tucker point is at x = 0.

NLP Myth 19. A strictly quasiconvex function is quasiconvex.

The de�nition of strictly quasiconvex says that f is de�ned on a convex set X, and f(αx +
(1 − α)y) < max{f(x), f(y)} for x, y ∈ X such that f(x) 6= f(y) and α ∈ (0, 1). (Note that
the de�nition imposes no restriction if f(x) = f(y).) Karamardian[27] found the following:

Counterexample. X = � and f(x) = 0 for x 6= 0, f(0) = 1. It can be shown that f
is strictly quasiconvex, but the level set, {x : f(x) ≤ 0}, is not convex, so f is not a
quasiconvex function.

This is what led to the de�nition of an explicitly quasiconvex function by Martos[31]. Details
and further properties are given by Greenberg and Pierskalla[20].

NLP Myth 20. Let f be convex on X 6= ∅, where X ⊆ �n, and the range of f is in
�m. Then, either there exists x ∈ X such that f(x) ≤ 0, or there exists y ∈ �m such that
yTf(x) > 0 for all x ∈ X. Further, the two alternatives exclude each other.

The reason this seems reasonable is due to the theorem by Fan, Glicksburg and Ho�man[11],
where the �rst system is f(x) < 0, and the alternative is y ∈ �m \ {0} such that yTf(x) ≥ 0
for all x ∈ X. The myth �seems reasonable,� considering related transposition theorems in
linear systems.

Counterexample. Let X = {(x1, x2) : x2 > 0 ∨ (x2 = 0 and x1 > 0)} and f(x) = xT.
Then, f(x) ≤ 0 has no solution in X. The (fallacious) alternative is y ≥ 0 and yTf(x) =
y1x1 + y2x2 > 0 for all x ∈ X. If y1 > 0, let x2 = 1 and x1 ≤ −y2y1 , so x ∈ X, but yTx ≤ 0.
If y1 = 0, let x2 = 0 and x1 > 0, so yTx = 0. Thus, the alternative system also has no
solution.
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NLP Myth 21. Newton's method converges to a stationary point if the starting point is
su�ciently close.

Newton's method is applied to the root-�nding problem, f(x) = 0, with the iterations:

xk+1 = xk − f(xk)
f ′(xk)

.

(In optimization, this is applied to the derivative of the objective function.)

A simple counterexample to the myth is any quadratic with two distinct roots, a, b, and
x0 = a+b

2 . In that case f ′(x0) = 0, so Newton's method is unde�ned. (We can make a, b
arbitrarily close to each other to satisfy the condition of the myth.)

A more interesting example is analyzed by Ascher[2], where Newton's method cycles � that
is, it generates x0 after a �nite number of iterations. (The analysis goes beyond this simple
example.)

Counterexample. Let f(x) = x2 + 3, so xk+1 = 1
2
xk − 3

2xk
. Then, for x0 = ±1, the iterates

cycle in two iterations.

NLP Myth 22. Newton's method has converged when the change in the iterate value is less
than some speci�ed, small tolerance.

Let f : �→� be a function in C1, for which we seek a root, f(x) = 0. Let {xk} be generated
by Newton's method:

xk+1 = xk − f(xk)
f ′(xk)

.

The stopping criterion in the statement says that we terminate when

|xk+1 − xk| < τ,

where τ is the tolerance. Donovan, Miller and Moreland[8] provided the following:

Counterexample. f(x) = 3
√
x e−x

2
. The generated sequence satis�es the iteration equation:

xk+1 = xk − 3xk

1− 6(xk)2
,

which does not converge. Yet, |xk+1 − xk| < τ is equivalent to:

∣∣∣∣ 3xk

1− 6(xk)2

∣∣∣∣ < τ , which

is eventually satis�ed since the authors prove that {xk}→∞.

They also derive properties of f and insight into its construction for the counterexample.
In particular, they note that the �rst part, 3

√
x, fails Newton's method on its own (xk+1 =

−2xk implies x = 0 is a repelling �xed point). The second part, e−x
2
, gives the �false

convergence� property.
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NLP Myth 23. Cyclic descent produces a local minimum.

We are given the mathematical program: min f(x) : x ∈ X, where X is a non-empty, closed
subset of �n. Cyclic descent proceeds as follows (where ei is the i th unit vector):

Set y = x
for i=1:n do

�nd t∗ ∈ argmin{f(y + tei) : (y + tei) ∈ X}
Set y ← y + t∗ei

end for
if ||y − x|| ≤ τ , exit; else set x← y and repeat.

The problem is that while f may not be increased by a change in any one variable, it could
increase with simultaneous changes in more than one variable.

Counterexample. f(x) = (x2 − x2
1)(x2 − 2x2

1); start at x = (0, 0).

mint f(t, 0) = mint 2t4 = 0, so there is no change after i = 1. Similarly, mint f(0, t) =
mint t2 = 0, so there is no change after i = 2. Hence, cyclic descent terminates after one
iteration with the same point with which it started, x = (0, 0). This is not a minimum,
even locally, because we can let x2 = 3

2
x2

1. Then, for x1 arbitrarily close to 0, but x1 6= 0,
f(x) = − 1

4
x2

1 < 0.

Also see Powell[34].

NLP Myth 24. If one algorithm has a higher order of convergence than another, it is better.

The reason that this is wrong is that the goodness of a solution (for example, how close it is to
optimal) cannot be accurately described by one number. Greenberg[17] provides the following:

Counterexample. Let {xk} be a sequence of solutions converging to x∗, and let f(x∗) be
the optimal objective value. De�ne the deviations, {ek = f(xk)−f(x∗)}. For de�niteness,
suppose ek > 0 for all k and we are minimizing (so {f(xk)} is approaching from above, as
in a primal algorithm). De�ne the �goodness� of xk to be ek � that is, how close f(xk)
is to the optimal objective value. Now suppose another algorithm generates the sequence
{Xk} whose associated goodness is {Ek}, where

Ek =

{
min{ek, ek+1}/k if k is odd;

Ek−1 if k is even.

The result is that the second sequence is sublinear (the worst possible for a monotonically
decreasing sequence), but Xk is always better since Ek < ek for all k.

An algorithm that has plateaux exhibits this behavior � no improvement for an iteration,
then a sharp improvement. Some measures of the order of convergence take constant
plateaux into account, but the example can be revised to have a plateau of length k at
iteration k, so the order of convergence is still sublinear.
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NLPMyth 25. For a convex program, the Generalized Lagrange Multiplier Method converges
to an optimal solution.

Counterexample. Let f∗(b) = max{f(x) : 0 ≤ x ≤ b} for b ≥ 0, where

f(x) =


2
√
x if x ≤ 1

x+ 1 if 1 ≤ x ≤ 2
4− e−(x−2) if x ≥ 2

(Note: f∗(b) = f(b).) Using any interval-reduction method[18] that does not terminate
�nitely, the left endpoint converges to 1 and the right endpoint converges to 2.

Finite termination occurs when the two endpoints equal the linearity portion, so the next
iteration chooses the multiplier equal to the slope (λ = 1). Then, the set of optimal
solutions is the interval [1, 2], so that any b in this interval is generated by searching the
set of alternative optima. Without �nite termination, no b in (1,2) is a limit point. There
is thus a pseudo-gap[16] for b ∈ (1, 2) in that the algorithm cannot reach the solution, but
there is no duality gap.

NLP Myth 26. Ritter's method to solve a QP converges to a global optimal solution.

The counterexample was found by Zwart[42]. The problem is that the sequence of feasible
regions (with a cut added each iteration) does not approach the optimality region. A non-
global optimum point persists in the sequence of optima.

Counterexample.

max 2x2
1 + x1x2 + 2x2 : −x1 ≤ 0, x1 + x2 ≤ 1, 1.5x1 + x2 ≤ 1.4, −x2 ≤ 10.

Each cut has the form 1
2k
x1 + x2 ≤ 1

2k
, and the optimal point is at the extreme point,

(0, 1
2k

). Ritter's method does not eliminate (0,0), so it cannot converge to the global
optimum, which is at (7.6,−10).

NLP Myth 27. Tui's method to maximize a convex function subject to linear constraints
converges to a global optimal solution.

This counterexample was found by Zwart[42]. The problem is that Tui's algorithm can cycle
� that is, repeat the generated subproblems.
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Counterexample.

max x2
1 + x2

2 + (x3 − 1)2 : x2 ≥ 0
x1 + x2 − x3 ≤ 0
−x1 + x2 − x3 ≤ 0

12x1 + 5x2 + 12x3 ≤ 22.8
12x1 + 12x2 + 7x3 ≤ 17.1
−6x1 + x2 + x3 ≤ 1.9

Zwart gives the following generated sequence, starting at x = (0, 0, 0).

Notation: q indexes auxiliary problem; kq indexes solution generated for qth

auxiliary problem; yqkq is Tui's search direction. See [42] for details.

NLP Myth 28. The Nelder-Mead method converges to a local optimum.

The Nelder-Mead method is a very good heuristic that does well in many hard nonlinear
problems. For a long time after its publication in 1965, many thought it converges to a local
optimum, but McKinnon[32] provided the following:

Counterexample. Let

f(x, y) =

{
AB|x|c + y + y2 if x ≤ 0
B xc + y + y2 if x ≥ 0,

where A,B, c are positive constants. Also, f is convex and has continuous �rst derivatives
for c > 1.
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Contours of McKinnon's func-
tion for A = 6, B = 60,
c = 2, taken from [32]. Note:
(0,−1) is a descent direction
from (0, 0).

McKinnon proves (nontrivially) that for certain choices of these constants, the algorithm
repeats the inside contraction step with the best vertex remaining �xed. In particular,
with A = 6 and B = 60, the counterexample works for 0 ≤ c ≤ c, and it does not work
for c > c, where c u 3.06, from McKinnon's derivation.

NLP Myth 29. Rosen's decomposition method converges to an optimal solution for convex
programs.

We are given the convex program:

min
(x,y)

cx : Ax ≥ b(y),

where b is a convex function. Rosen's decomposition is to separate x and y problems and
proceed as follows. For any �xed y = ȳ, we obtain x̄ by solving:

LP(ȳ): min
x

cx : Ax ≥ b(ȳ).

Partition [A b] into the tight and surplus constraints at the solution:

Bx̄ = bB(ȳ), Nx̄ > bN (ȳ).

(So A = ( BN ) and b =
(
bB
bN

)
.) We suppose B is nonsingular and use the tight constraints to

eliminate x = B−1bB(y) for any choice of y. To maintain feasibility of the surplus constraints,
we require

bN (y)−N TB−1bB(y) ≤ 0.

Using the Taylor expansion at ȳ to linearize the constraints, Rosen's method solves the non-
linear program:

NLP(B, ȳ): min
y

cB−1bB(y) : bN (ȳ) +∇bN (ȳ)(y − ȳ)−N TB−1
(
bB(ȳ) +∇bB(ȳ)(y − ȳ)

)
≤ 0.

Rosen's method is to start with y0, then solve iteratively:
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1. Solve LP(yk) and obtain B

2. Solve NLP(B, yk) and obtain yk+1.

Subject to some details about step 2, the idea is to solve a sequence of problems that are
decomposed, rather than tackle the whole nonlinear problem.

Grossmann[23] provided the following:

Counterexample. min x : x ≥ y2, x ≥ y. Let the starting value satisfy y0 > 1. Grossmann
proves yk > 1 for all k = 0, 1, . . . , but the optimum is at (x∗, y∗) = (0, 0).

Proceeding inductively, suppose yk > 1. Then, xk = (yk)2, and the optimal basis has the
slack variable s = x− y. Therefore, yk+1 is determined by

yk+1 ∈ argmin{y2 : (2yk − 1)y ≥ (yk)2}.

Since yk > 1, the solution is yk+1 = (yk)2

2yk−1
> 1, and that completes the induction proof.

NLP Myth 30. new In methods of feasible directions, it is better to improve the objective
function each iteration than allow it to worsen.

Counterexample. Grippo, Lampariello, and Lucidi[22] illustrated the use of their non-
monotone method

xk+1 = xk − sk[∇2f(xk)]−1∇f(xk),

where sk = sign
(
∇f(xk)T[∇2f(xk)]−1∇f(xk)

)
.

The counterexample applies this to an unconstrained minimization in �2 using Rosen-
brock's function: f(x1, x2) = 100(x2 − x2

1)2 + (1 − x1)2. The minimum is at x∗ = (1, 1),
and the starting point is x0 = (−1.2, 1). Their nonmonotone method converges in 7
iterations with f(x4) > f(x3):

k xk1 xk2 f(xk)
0 −1.2000000000 1.0000000000 24.200
1 −1.1752808989 1.3806741573 4.732
2 0.7631148712 −3.1750338547 1.412
3 0.7634296789 0.5828247755 0.056
4 0.9999953111 0.9440273239 0.3132
5 0.9999956957 0.9999913913 1.853×10−11

6 1.0000000000 1.0000000000 3.433×10−20

7 1.0000000000 1.0000000000 < 10−38

Steepest descent using optimal step size takes 33 iterations to get as close. Armijou's[1]

descent (without optimal step size) takes 22 iterations. This illustrates that improving
the objective function every iteration is not necessarily a most e�ective way to reach the
optimum.

Generally, Rosenbrock's function is used to illustrate profuse zig-zagging in Cauchy's steepest
descent with sk ∈ argmin{f(xk + s∇f(xk)) : s ≥ 0}. The nonmonotone method in this coun-
terexample highlights the need to capture curvature information, as does Newton's method.
(Also see MacMillan[29] for mixing steepest descent with Newton's method.)
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NLP Myth 31. new Sequential Quadratic Programming (SQP) is quadratically convergent
when it is su�ciently close to the solution.

Given max{f(x) : x ∈ �n, g(x) = 0}, where f, g have continuous second derivatives, the
SQP subproblem is given by the iteration subproblem:

max f(xk) +∇f(xk)(x− xk) + 1
2
(x− xk)TH(xk)(x− xk) : g(xk) +∇g(xk)(x− xk) = 0,

where H(xk) is the Hessian of the Lagrangian: H(xk) = ∇2f(xk) − λk∇2g(xk). The sub-
problem thus requires both xk and λk as input. The constraint is replaced by its linear
approximation from the Taylor series, so the iterates need not be feasible.

The intuition is that SQP behaves like Newton's method when it is close to the solution. The
problem is that the step size can become so close to zero that it slows the convergence. This
is known as the Maratos e�ect, and it can prevent convergence entirely � see Maratos[30],
Panier and Tits[33], Bonnans et al.[5], and Vanden Berghen[36].

Counterexample. Vanden Berghen[36] provides the following: min 2(x2
1 + x2

2 − 1) − x1 :
x2

1 + x2
2 = 1.

The optimum is at x∗ = (1, 0), and the starting
point is x0 = (0, 1). The SQP algorithm �nds
x1 = (1, 1), and the next step size is zero.

Taken from Vanden Berghen[36].

The Maratos e�ect can be overcome by Second Order Correction and sometimes by �ltering
� see Fletcher, Ley�er, and Toint[14].

NLP Myth 32. new A barrier algorithm is globally convergent if the functions are smooth
and there is a unique stationary point that is the global optimum.

Counterexample. Wächter and Biegler[38] provide the following:

min x1 : x2
1 − x2 = 1, x1 − x3 = 0.5, x2, x3 ≥ 0.

The barrier problem is

min x1 − µ
(

ln(x2) + ln(x3)
)

: x2
1 − x2 = 1, x1 − x3 = 0.5, x2, x3 > 0.

Note that the non-negativity constraints are replaced by positivity constraints. That is
the formal statement of the barrier NLP, but the positivity constraints are ignored (and
sometimes omitted, with risk of confusion) because we must use a continuous-trajectory
algorithm, starting with a feasible point. This excludes, for example, applying the Nelder-
Mead algorithm.

[ToC] [LP] [IP] [DP] [NLP] [MOP] [Special] [Index]



Page 92
March 10, 2009

12:34pm NLP Myths & Counterexamples

Starting with x0 = (−2, 3, 1), Wächter[37] gives the iterates for a particular barrier algo-
rithm:

The algorithm aborts because the step size becomes too small. (see NLP Myth 31 for the
Maratos e�ect.)

Wächter and Biegler note that the example has no degeneracy hidden in the equality
constraints, the Jacobian is nonsingular everywhere, and the minimum satis�es second-
order su�cient conditions and is strictly complementary. Hence, the counterexample is
well posed, not some esoteric pathology.

Wächter's thesis[37] provides a deeper analysis of the above counterexample and shows that
seemingly reasonable barrier algorithms from a generic class cannot be globally convergent
under mild assumptions. The root of the problem is that those methods compute search
directions that satisfy the linearization of the constraints (for example, line-search methods)
and are later cut short to keep the iterates positive. Only algorithms that deviate from
this paradigm (such as certain trust-region or �lter methods) can be shown to have good
convergence properties.

Larry Biegler adds the following points.

1. Failure of this example occurs for barrier methods where the search direction satis�es
linearization of the equality constraints, followed by a line search, using any merit
function (for example, a line-search based Newton method). Because of this restriction
and the need to remain feasible to the bounds, the algorithm eventually terminates
because it is too constrained to �nd a search direction to reduce the infeasibility of the
equalities. [This is the Maratos e�ect, which a�ects SQP and Newton-based methods
� see NLP Myth 31).]

2. Wächter's thesis mentions that convergence proofs for Newton-based line search bar-
rier methods (from earlier studies) require boundedness of the multipliers (or similar
regularity assumption). This assumption turns out to be violated for this example.

3. There are other barrier methods that can solve this counterexample. For instance, the
trust region method (for example, in KNITRO) generates search directions that are not
restricted by the constraint linearization, generate search directions that improve the
constraint infeasibility, and avoid this failure of the counterexample.
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NLP Myth 33. new If every optimum in the trajectory of a barrier function satis�es strong
second-order necessary conditions, so does its limit.

Phillip Toint brought this to my attention. The intuition behind the myth is that many
unconstrained algorithms can guarantee convergence to a stationary point that satis�es weak
second-order conditions if each point in the trajectory does. The issue is whether the same
could be said of the strong second-order conditions.

The NLP is min f(x) : g(x) ≥ 0, for which we consider the trajectory of the logarithmic
barrier function:

x∗(µ) ∈ argmin
{
f(x)− µ

∑
i log gi(x) : g(x) > 0

}
for µ > 0.

The myth assumes that x∗(µ) satis�es strong second-order conditions:

hT

[
∇2f(x∗(µ))− µ

∑
i

∇2gi(x∗(µ))

]
h > 0 for all h 6= 0.

Counterexample. Gould and Toint[15] consider the following:

min
x∈�n+

1
2
xTQx,

where Q is symmetric and inde�nite. The strong second-order conditions are that the
Hessian of the Lagrangian be positive semi-de�nite over the space of feasible directions,
strengthened by disallowing change in x∗i = 0 when its associated Lagrange multiplier, λi,
is positive:

hTQh ≥ 0 for all h :

{
hi = 0 for x∗i = 0, λi > 0

hi ≥ 0 for x∗i = 0, λi = 0.
(NLP.7)

We apply the logarithmic barrier (which is a special case of [15]). For x > 0:

b(x;µ) = 1
2
xTQx− µ

∑
i log xi (NLP.8)

∇ b(x;µ) = Qx− µX−1e (NLP.9)

∇2b(x;µ) = Q + µX−2e, (NLP.10)

where e is a vector of ones and X = diag{xi}.

De�ne Q = I − 3
2

z ⊗ zT

||z||2
, where z = e − ne1 and ||•|| is the Euclidean norm. Then,

x∗(µ) =
√
µ e. This follows from Qe = e:

∇ b(x;µ) = 0⇒√µe = µdiag
(

1
√
µ

)
e.

To show that the strong second-order conditions hold, substitute in (NLP.10):

∇2b(x;µ) = 1
2
I + 3

2

(
I − z ⊗ zT

||z||2

)
.
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This is positive de�nite, thus satisfying the condition in the myth. However, lim
µ→ 0

x∗(µ) =

0, and e1 is an admissible direction for the strong second-order conditions. Hence, for the
myth to be true, we require:

0 ≤ e1TQe1 = 1− 1
2

(e1T⊗z)2

||z||2
=
n− 3

2
(n− 1)
n

.

This is violated for n ≥ 4.

NLP Myth 34. The central path converges to the analytic center of the optimality region of
a semide�nite program.

This is true for a linear program, but an attempted extension failed to assume a strictly
complementary solution. Halická, de Klerk, and Roos[24] provide the following:

Counterexample.

min x44 :

X =


1− x22 x12 x13 x14

x12 x22 − 1
2
x44 − 1

2
x33

x13 − 1
2
x44 x33 0

x14 − 1
2
x33 0 x44

 � 0.

The optimality region consists of all positive semide�nite matrices of the form:

X∗ =


1− x22 x12 0 0
x12 x22 0 0
0 0 0 0
0 0 0 0

 .
In particular, a positive de�nite optimum is given by setting x22 = 1

2
, x33 = x44 = 1

4
, and

xij = 0 for i 6= j. Its analytic center is

X∗ =


1
2

0 0 0
0 1

2
0 0

0 0 0 0
0 0 0 0

 .
Halická et al. prove that the central path satis�es

lim
µ↓0

X(µ) =


0.4 0 0 0
0 0.6 0 0
0 0 0 0
0 0 0 0

 .
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NLP Myth 35. If an NLP is infeasible, one can sequentially test for the deletion of con-
straints: if its deletion renders the system feasible, keep it; if its deletion maintains the system
infeasible, remove it. What remains is an IIS.

The indicated method is deletion �ltering, introduced by Chinneck, to compute an Irreducible
Infeasible Subsystem (IIS). His recent book[6] provides all background analysis, including the
following:

Counterexample. y −
√
x = 0, x ≥ 0, y ≤ −1.

If the algorithm drops x ≥ 0, the solver issues an error message and the algorithm cannot
proceed.

Unlike LP, such logical constraints may be needed in NLP. Another source of failure is the
inability of the NLP solver to determine whether a nonlinear system is feasible. This is more
di�cult than for an LP.
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Multiple-Objective Programming

The multiple-objective mathematical program has the range of the objective function in �N

with N > 1. An optimal solution is de�ned as follows. A point x ∈ X is dominated by x′ ∈ X
if f(x′) ≥ f(x) and fi(x′) > fi(x) for some i. (Reverse the inequalities for minimization.) A
Pareto-optimum is a feasible solution that is not dominated. This is denoted:

Pareto-max f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0.

The Pareto frontier is the set of Pareto-optima, denoted

argPareto-max{f(x) : x ∈ X, g(x) ≤ 0, h(x) = 0}.

One way to generate a Pareto-optimal is by taking a strictly-positive combination of the
objective functions and solving:

max
∑N
i=1 wifi(x) : x ∈ X, g(x) ≤ 0, h(x) = 0,

where w > 0. This is sometimes called the weighted-objective model, and each optimal solution
is Pareto-optimal. Typically, but not always, the weights are normalized by

∑N
i=1 wi = 1.

For a multiple-objective standard Linear Program (LP), the form is given by:

Pareto-max Cx : Ax = b, x ≥ 0,

where C is N × n.
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MOP Myth 1. For LP, the Pareto frontier is a convex set.

Counterexample. The following has its Pareto frontier along the two edges de�ned by
2x1 + x2 = 2 and x1 + 2x2 = 2, respectively. In particular, points (1, 0) and (0, 1) are
Pareto-optimal, but their midpoint, ( 1/2 , 1/2 ), is dominated by ( 2/3 , 2/3 )

Pareto-max
{
x1

x2

}
: x ≥ 0

2x1 + x2 ≤ 2
x1 + 2x2 ≤ 2

.

MOP Myth 2. Varying the weights of a convex combination of objectives generates the
Pareto frontier.

Although it is trivial to show that a solution to the weighted-objective (with w > 0) is a
Pareto-optimum, the myth asserts the converse: each Pareto-optimum can be generated by
some positive weight.

The problem is the same as the duality gap. In
particular, the Lagrangian has a duality gap
when the optimal response function is not con-
vex (for minimization). That is what happens
when the Pareto frontier does not produce a
convex function in f1-f2 space. (See �gure on
right.)

Das and Dennis[5] provide the following:

Counterexample.

Pareto-min

{
f1(x) = x2

1 + x2
2 + x2

3 + x2
4 + x2

5,

f2(x) = 3x1 + 2x2 − 1
3
x3 + 0.01(x4 − x5)3}

}
:

x1 + 2x2 − x3 − 0.5x4 + x5 = 2

4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2
5 = 0

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 ≤ 10.

Also see Steuer[21, p. 439] .
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MOP Myth 3. new Adding an objective function expands the set of Pareto-optima.

Let X∗N be the set of Pareto-optima for f = (f1, . . . , fN )T. The Myth asserts X∗N ⊆ X∗N+1.

Counterexample. Lowe, Thisse, Ward, and Wendell[16] provide the following. Let f1 have
two maxima, x1 and x2, such that f2(x1) < f2(x2). Then, x1 ∈ X∗1 but x1 6∈ X∗2 .

MOP Myth 4. Consider the multiple-objective convex program:

Pareto-min f(x) : x ∈ �n, g(x) ≤ 0,

where f and g are convex and di�erentiable. Then, x∗ is a Pareto-optimal if g(x∗) ≤ 0, and
there exists w, λ ≥ 0 such that λg(x∗) = 0 and

w∇f(x∗) + λ∇g(x∗) = 0.

The basis for this is that these are the Lagrangian (Kuhn-Tucker-Karush) conditions for the
weighted model. (The su�ciency is due to the convexity assumptions.)

Kim, Lee, and Cho[14] provide the following:

Counterexample.

Pareto-min
{
x1

x2

}
: x1 ≥ 0, x1(x1 − 1) ≤ x2.

Consider x∗ = (0, 1). This is not a Pareto-optimum because it is dominated by (0, 0). Let
w = λ = (1, 0), so the conditions stated in the myth are satis�ed with:

(1, 0)
[

1 0
0 1

]
+ (1, 0)

[
−1 0
−1 −1

]
=
(

0
0

)
.

MOP Myth 5. Consider a multiple-objective LP in standard form. A Pareto-maximum can
be obtained from a weighted objective, where the weights (w) are obtained from a solution to:

min bTu : uTA− wC ≥ 0, w ≥ 1.

Isermann[12] proposed this with the intuition that this is a sort-of dual to the original Pareto-
maximum in the sense that the weighted objective wCx yields this LP (but with w �xed).
The goal here is to obtain some initial Pareto-maximum, then �nd others. The following is
due to Ecker and Hegner[6]:

Counterexample.

Pareto-max
(
−x1

x4

)
: x ≥ 0,

x1 − x2 = 1
x1 + x3 = 2

x4 = 1
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A Pareto-maximum is x = (1, 0, 1, 1). The LP to obtain the weights is given by:

min u1 + 2u2 + u3 : w1, w2 ≥ 1

u1 + u2 + w1 ≥ 0
−u1 ≥ 0

u2 ≥ 0
u3 − w2 ≥ 0

This is unbounded because we can let (u,w) = (−2t, 0, t, 2t, t), which is feasible for all
t ≥ 1. The minimand is −t, which diverges to −∞ as t→∞.

Ecker and Kouada[7] give the correct result as follows. Suppose Cx0 6= 0 for some feasible x0.
Then, there exists a Pareto-maximum if, and only if, the following LP has an optimum:

max
∑N
i=1 si : Cx = s+ Cx0, Ax ≤ b, x, s ≥ 0.

(Omitting Cx0, the dual is Isermann's LP. The counterexample shows that Cx0 cannot be
omitted.)

In the counterexample, x0 does not exist because Cx 6= 0 for any feasible x. See Benson[3] for
additional discussion and another way to get an initial Pareto-maximum that is an extreme
point of the feasible polyhedron.

MOP Myth 6. Let U be an increasing utility function on the range of f on X, and

max U(f(x)) : x ∈ X.

Then, an extreme point with greatest utility value is Pareto-optimal.

Steuer[21, p. 157] provides the following:

Counterexample.

Pareto-max
{
x1

x2

}
:

x1 + x2 ≤ 18
8x1 + 6x2 ≥ 112
5x1 + 7x2 ≥ 96

x ≥ 0.

Figure taken from [21].

This has three extreme points:

x1 = (2, 16), x2 = (15, 3), x3 = (8, 8).
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x3 is not Pareto-optimal because it is dominated by the non-extreme point (9, 9). However,
for U(f1, f2) = f1f2, x3 has the greatest utility value (64); the two Pareto-optimal extreme
points have lower utility values:

U(f(x1)) = 32, U(f(x2)) = 45.

MOP Myth 7. In a multiple-objective LP, one should put the greatest weight on the most
important objective.

Steuer[21, p. 198�9] provides the following:

Counterexample.

Pareto-max

 2x1 + 4x2

3x1 − 3x2

5x2

 :
x ≥ 0, x2 ≤ 12
3x1 + 5x2 ≤ 72
3x1 − 5x2 ≤ 12

Figure taken from [21].

Assume the objectives are in order of importance, and consider the following two weights:
w1 = (0.7, 0.2, 0.1) and w2 = (0, 0.1, 0.9). The �rst weight re�ects the relative importance
of the objectives and generates the Pareto-optimum point x1 = (14, 6), with objective
values (52, 33, 30). The second one is contrary to the relative importance and generates
the Pareto-optimum point x2 = (4, 12), with objective values (56,−24, 60).

These are counter-intuitive results because x2 better re�ects the objectives' relative im-
portance. The outcome, particularly the latter, where x1 is the solution, is due to the
correlation between c1 and c3. By placing a large weight on c3, it is not necessary to place
a high weight on c1.

MOP Myth 8. All Pareto-optimal solutions are equal.

The issue is that of value trade-o�, say between two objectives that are in con�ict. In partic-
ular, suppose f1(x) is cost (in USD) for decision x, and f2(x) is risk. Keeney[13] provides the
following:

Counterexample. Suppose it costs $3 billion annually if carbon monoxide concentrations
are limited to 3 parts per million, and suppose that it costs $6 billion if concentrations are
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held to 2 parts per million. We must ask, �Is it worth $3 billion to lower concentrations
from 3 parts per million to 2 parts per million?� The appropriate way to address this
is to model the causal relationship between pollutant concentrations and potential health
e�ects. Then, one could deal directly with the value trade-o�s between cost of the national
air quality standard and the health e�ects averted.

The two Pareto-optima solutions are not equal, but the model focused attention on them
for further analysis.

By its de�nition, points on the Pareto frontier are indi�erent to each other as far as the
model is concerned. Applying multiple-objective programming to decision-making, however,
we must go beyond �nding points on the Pareto frontier. Also, MOP Myth 7 demonstrates
that using weights may not resolve the issue. It is important that Pareto-optima help to focus
what can be achieved, but ultimately there is a trade-o� in the value of one Pareto-optimum
versus another. That trade-o� could be subjective or with re�ned analysis. Keeney gives
details on this, citing 12 common mistakes in making value trade-o�s.

MOP Background � Pareto-optimum Graph

The following bene�tted from comments by Jochen Gorski.

De�ne a Pareto-optimum graph whose nodes correspond to some �nite set of Pareto-optimum
solutions and whose edges correspond to their adjacency. The notion of the �nite set of
solutions and of their adjacency are not de�ned in general. For LP, it is natural to de�ne
Pareto-optimal adjacency the same as in LP: the nodes are basic optimal solutions, and their
adjacency is that of their bases. For combinatorial problems, it is natural to use underlying
combinatorial structures. For example, two spanning trees are adjacent if they di�er by one
edge (having n− 2 edges in common).

The signi�cance of a Pareto-optimum graph is its connectedness, raising the question if one
can traverse the nodes without having to compute a solution that is not Pareto-optimal. If
so, this enables neighborhood search to produce them. (See Gorski, Klamroth, and Ruzika[10]

for a substantive description of this concept and an up-to-date review of results.)

MOP Myth 9. The Pareto-minimum graph for spanning trees is connected.

Ehrgott and Klamroth[8] provide the following:

Counterexample. The edge numbers are the costs of two objectives. In particular, (0, 0) is
an edge with zero cost in both objectives, as the edge (s1, s11).
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Figure taken from [8].

The following table lists the 12 Pareto-minimum spanning trees, showing the edges with
positive costs (all edges with zero cost are in each tree).

Pareto-minimum Objective
Tree Edges with Non-zero Cost Values
T1 (s13, s2), (s22, s3), (s31, s4) (1, 28)
T2 (s13, s2), (s22, s3), (s33, s4) (2, 24)
T3 (s13, s2), (s23, s3), (s31, s4) (8, 22)
T4 (s13, s2), (s23, s3), (s33, s4) (9, 18)
T5 (s13, s2), (s21, s3), (s33, s4) (12, 17)
T6 (s11, s2), (s23, s3), (s33, s4) (12, 17)
T7 (s11, s2), (s21, s3), (s33, s4) (17, 16)
T8 (s12, s2), (s22, s3), (s32, s4) (20, 15)
T9 (s13, s2), (s23, s3), (s32, s4) (27, 14)
T10 (s13, s2), (s21, s3), (s32, s4) (28, 9)
T11 (s11, s2), (s23, s3), (s32, s4) (36, 7)
T12 (s11, s2), (s21, s3), (s32, s4) (39, 6)

Tree T8 is not adjacent to any other Pareto-minimum spanning tree.

An implication is that to visit each Pareto-minimum spanning tree, we may need to visit
a non-optimal spanning tree during the pivoting process. See Przybylski, Gandibleux, and
Ehrgott[19] for how this invalidates a class of algorithms that seek to generate Pareto-optimal
spanning trees and shortest paths.

MOP Myth 10. The Pareto frontier is closed.

The result is true for LP, but Kornbluth and Steuer[15] provide the following for a fractional
program:

Counterexample.

Pareto-max


x1 − 4
3− x2

−x1 + 4
x2 + 1
−x1 + x2

 :
−x1 + 4x2 ≤ 0
x1 − 1

2
x2 ≤ 4

x ≥ 0
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x1 = (0, 0) x2 = (1, 0)
x3 = ( 4/3 , 1/3 ) x4 = (4, 0)
x5 = (4, 1) x6 = ( 32/7 ,

8/7 )

The feasible region is the convex hull of the extreme points, denoted convh{x1, x4, x6}.
The objective values for each of the points are:

f(x1) =

− 4/3

4
0

 f(x2) =

−1
3
−1



f(x3) =

−1
2
−1

 f(x4) =

 0
0
−4



f(x5) =

 0
0
−3

 f(x6) =

 4/13

− 4/15

− 24/7

 .

The Pareto frontier is given by the union of convex hulls minus two half-open line segments:

X∗ = convh{x2, x3, x4, x5} ∪ [x1, x2] ∪ [x5, x6]− (x2, x3]− [x4, x5),

where − denotes the set-minus. Points x3 and x4 are not Pareto-optimal, but they are
in the closure of X∗. In particular, x3 is dominated by x2, but all feasible points on
{(x3, x3 + (ε, 0)) : ε > 0} are not dominated � they are Pareto-optimal. Thus, x3 is a
cluster point of X∗, so X∗ is not closed.

MOP Myth 11. If the Pareto frontier contains an interior point, it must contain all interior
points.

The result is true for LP, but the fractional program given by Kornbluth and Steuer[15] in
MOP Myth 10 provides the following:

Counterexample. Interior points in convh{x2, x3, x4, x5} are Pareto-optimal, but those in
convh{x1, x2, x3} ∪ convh{x4, x5, x6} are not.

MOP Myth 12. The Pareto frontier is edge-connected.

The result is true for LP, but the fractional program given by Kornbluth and Steuer[15] in
MOP Myth 10 provides the following:

Counterexample. Points x1 and x6 are Pareto-optimal, but they are not edge-connected
because the edge (x2, x3] is not in X∗ (neither is [x4, x5)).
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MOP Background � Lexico-optima and Bilevel Programs

Another way to generate Pareto-optimal solutions is by ordering the objective functions and
solving sequentially. Suppose f1 � f2 � · · · � fN . Then, the lexico-optimum model is given
by:

X1 = argmax{f1(x) : x ∈ X}
X2 = argmax{f2(x) : x ∈ X1}
...
XN = argmax{fN (x) : x ∈ XN−1}

(The sequence stops if it is initially infeasible or encounters an unbounded solution.) The
points in XN are Pareto-optimal, with f lexio-graphically ordered: f(x∗) � f(x) for x∗ ∈ XN

and x ∈ X. (See Sherali and Soyster[20].)

As a practical matter, the sequence is modi�ed by tolerances that allow a small amount of sub-
optimality, which often results in Xk containing more than one point � that is, near-optimal
solutions. Given τ = (τ1, . . . , τN ) ≥ 0,

z1 = max{f1(x) : x ∈ X} X1 = {x ∈ X : f1(x) ≥ z1 − τ1}
z2 = max{f2(x) : x ∈ X1} X2 = {x ∈ X1 : f2(x) ≥ z2 − τ2}
...

...
zN = max{fN (x) : x ∈ XN−1} XN = {x ∈ XN−1 : fN (x) ≥ zN − τN}

Related to N = 2, we have the bilevel mathematical program:

max f2(x, y∗) : x ∈ X, y∗ ∈ argmax{f1(x, y) : y ∈ Y (x)}.

This also represents the ordered preference f1 � f2, but the inner optimality constraint is a
restriction that y∗ be optimal in the priority objective, whereas the lexico-optimum second
problem would include x as:

max f2(x∗, y∗) : (x∗, y∗) ∈ argmax{f1(x, y) : x ∈ X, y ∈ Y (x)}.

See MOP Myth 14 to avoid thinking the bilevel solution is the Pareto-optimum:

Pareto-max
{
f1(x, y)
f2(x, y)

}
: (x, y) ∈ X ,

where X = {(x, y) : x ∈ X, y ∈ Y (x)}. Also, see Fliege and Vicente[9] for a recent analysis
of their relationship.

MOP Myth 13. Every Pareto-optimum is a solution to the lexico-optimum of some lexico-
ordering.

Counterexample. Consider

Pareto-max
(
x
y

)
: x, y ≥ 0, 2x+ y ≤ 2, x+ 2y ≤ 2.
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Using the given order, we �rst maximize x and obtain X1 = {(1, 0)}. Since this is unique,
the generated Pareto-optimum is (1, 0). Reversing the order, we maximize y and obtain
X1 = {(0, 1)}. Again, since this is unique, the generated Pareto-optimum is (0, 1). Thus,
the generated solutions are two points, but the Pareto frontier contains the point ( 2/3 , 2/3 )
(generated by weights w = ( 1/2 , 1/2 )).

MOP Myth 14. A solution to the bilevel mathematical program can be found with some
weighted objective solution.

The myth says there exists w ∈ [0, 1] such that a solution to the bilevel mathematical program
is found by solving:

max wf1(x, y) + (1− w)f2(x, y) : x ∈ X, y ∈ Y (x).

Counterexample. Haurie, Savard, and White[11] provide the following:

max −x− 5y∗ : x ≥ 0,
y∗ ∈ Y (x) = argmax{y : y ≥ 0

x + y ≥ 8
−3x + 2y ≤ 6

3x + 4y ≤ 48
2x − 5y ≤ 9}.

The optimal bilevel solution is at (x∗, y∗) = (12, 3), but a weighted-objective solution is
given by other extreme points of the polyhedron. Here are the weighted-objective solutions
for ranges of w:

w-range optimal extreme point
0 ≤ w ≤ 0.15 (2, 6)
0.15 ≤ w ≤ 0.20 (4, 9)
0.20 ≤ w ≤ 1 (7, 1)

The only extreme point with a greater value of the �rst-level objective is (7, 1), but
1 6∈ Y (7), so it is not feasible in the bilevel model. The bilevel solution (12, 3) is not a
solution to any of the weighted-objective models. If it were, it would be Pareto-optimal;
Haurie et al. point out that bi-criteria solutions are generally not Pareto-optimal.

Also see the counterexamples by Candler[4] , Wen and Hsu[23]. Further, the counterexample
by Ben-Ayed and Blair[2] is for the Grid Search Algorithm, which rests on this myth. See
Marcotte[17] for a counterexample to a solution for the equilibrium network design problem
based on the same myth.
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MOP Myth 15. new An optimal solution to the linear bilevel program is either Pareto-
optimal, or it solves the outer LP.

Counterexample. Wen and Hsu[23] provide the following:

max f2(x, y) = −2x+ 11y : x ≥ 0,
y∗ ∈ argmax{f1(y) = −3y : y ≥ 0,

x − 2y ≤ 4
2x − y ≤ 24
3x + 4y ≤ 96
x + 7y ≤ 126

−4x + 5y ≤ 65
x + 4y ≥ 8}.

The bilevel solution is at (x∗, y∗) = 1
11 (192, 120). It is not Pareto-optimal because it is

dominated by (x, y) = 1
11 (19, 108) with the objective values: f(x∗, y∗) = (−32.727, 85.091)T<

f(x, y) = (−29.45, 104.55)T. The myth asserts that (x∗, y∗) must solve the �outer LP:�

max −2x+ 11y : x, y ≥ 0
x − 2y ≤ 4

2x − y ≤ 24
3x + 4y ≤ 96
x + 7y ≤ 126

−4x + 5y ≤ 65
x + 4y ≥ 8}.

The optimal solution is (x, y) = (5.333, 0.667) with f2(x, y) = −8.667 > f2(x∗, y∗) =
−32.727.

MOP Myth 16. new A linear bilevel optimum is Pareto-optimal if the coe�cient vectors
of the inner variable forms an acute angle.

The linear bilevel program is:

max cx+ dy∗ : x ≥ 0, Ax ≤ b, y∗ ∈ argmax{fy : y ≥ 0, Fx+Gy ≤ g}.

The myth asserts that if (x∗, y∗) is a bilevel optimum, it is Pareto-optimal if df T> 0.

The intuition behind this is as follows. From 1983[1]�1988[4, 17] it was believed that the linear
bilevel program is Pareto-optimal for:

max
(
cx+ dy
fy

)
: x, y ≥ 0, Ax ≤ b, Fx+Gy ≤ g.

The rationale is that weights can purportedly be established using the Lagrange (Karush-
Kuhn-Tucker) conditions, so that the bilevel program must solve

max λ(cx+ dy) + (1− λ)fy : x, y ≥ 0, Ax ≤ b, Fx+Gy ≤ g
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for some λ ∈ [0, 1]. Before that myth was dispelled (see MOP Myth 14), Ünlü[22] proceeded
to correct this by pointing out that Pareto-optimality is not ensured for λ = 1, resulting in
MOP Myth 15. That case is the outer LP � Wen and Hsu[23] gave a counterexample to
show that this is not always true. Applying the Kuhn-Tucker conditions, they proposed that
Ünlü's theorem is true if df ≥ 0.

Counterexample. Marcotte and Savard[18] provide the following:

max f2(x, y) = −x− 2y1 − 2y2 : x ≥ 0, x ≤ 1,
y∗ ∈ argmax{f1(y) = y1 − 2y2 : y ≥ 0, x+ y1 ≤ 2}.

We have df T = (2, 2)(−1, 2)T > 0. The bilevel optimum is at (1, 1, 0) This is not
Pareto-optimal because it is dominated by (x, y) = (0.5, 1.1, 0) with f1(x, y) = −2.7 >
f1(x∗, y∗) = −3 and f2(x, y) = 1.1 > f2(x∗, y∗) = 1.

MOP Myth 17. new The Parametric Complementary Pivot algorithm obtains a bilevel
solution.

Counterexample. Ben-Ayed and Blair[2] provide the following:

max 1.5x+ 6y∗1 + y∗2 : 0 ≤ x ≤ 1
y∗ ∈ argmax{y1 + 5y2 : y ≥ 0, x+ 3y1 + y2 ≤ 5, 2x+ y1 + 3y2 ≤ 5}.

The PCP algorithm searches for a solution to the feasibility and complementary slackness
conditions:

x+ 3y1 + y2 + s1 = 5
2x+ y1 + 3y2 + s2 = 5

x+ s3 = 1

0.01y1 + 3u1 + u2 − t1 = 1
0.01y1 + u1 + 3u2 − t2 = 5

x, y, s, t, u, z ≥ 0.

1.5x+ 6y1 + y2 − z = 2
yt = u(s1, s2)T = 0

The algorithm starts by ignoring the inner maximization (but does satisfy the constraints).
That solution is x = 0 and y = (1.667, 0), with s = (0, 3.333, 1). The complementary
slackness conditions require t1 = 0 and u = (0.328, 0). The middle equation then yields
t2 = .01667 + 0.328− 5 < 0, so an arti�cial variable, w, is introduced:

0.01y1 + u1 + 3u2 − t2 + w = 5.

Entering x, y2, u2, s1, or t1 decreases w. However, u2 cannot enter because s2 > 0; simi-
larly, neither s1 nor t1 can enter. If we choose y2 to enter, s2 leaves. At the next step, we
may have u2 enter (u1 leaves), then s1 enters to produce the system:

y1 + 0.147x− 0.059s2 − 0.176z = 0.059.

At this point, the PCP algorithm stops with the conclusion that the system has no solution.
However, a solution is: x = 1, y = (0, 1), s = (3, 0, 0), u = (0, 1.663), t = (0.663, 0),
z = 0.5.

Ben-Ayed and Blair prove that the bilevel LP is NP-hard, so no polynomial algorithm can
ensure optimality (unless P = NP ).
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Special Forms of Mathematical Programs

This section presents some myths and counterexamples for mathematical programs that do
not �t easily into one of the other sections, notably some particular applications.

SF Myth 1. A good cluster results from maximizing inter-cluster distances and minimizing
cluster diameters.

Counterexample. The following is taken from Climer and Zhang[3].

Using Euclidean distance as the similarity measure for (a), the �intuitive cluster� is (b).
The myth fails because many points are closer to a di�erent cluster than their own (so the
diameters are not minimized), and the distance between clusters is less than maximal.

SF Myth 2. A chance-constraint stochastic program has a solution if its certainty equivalent
has a solution.

The model is given by:

max E[f(x; θ)] : x ∈ X, Pr[g(x; θ) ≤ 0] ≥ α,

where θ is a vector of uncertain parameters and α ∈ (0, 1). In words, this seeks a policy to
maximize the expected value of the objective, subject to it being feasible with probability at
least α. The probability and expected value operators are generally taken with respect to θ,
and x is a pure strategy solution.

Greenberg[9] pointed out that one could allow mixed-strategy solutions, in which case the
chance constraint could be violated a certain percentage of time. (Also see Blau[2].) The
model becomes:

max
H

∫
x∈X

∫
θ

f(x; θ)dF (θ)dH(x) : Pr[g(x; θ) ≤ 0] ≥ α,
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where H is a distribution function on X, subject to choice. The chance constraint is now a
joint probability with respect to (x, θ). (Since x is selected before θ is known, the events are
independent; hence, we see the product of their distributions.)

Counterexample. Suppose
∫
θ
f(x; θ)dF (θ) is unbounded over X: ∃{xk} ⊆ X such that∫

θ
f(xk; θ)dF (θ) ↑ ∞. Let x0 be any always-feasible solution � that is, g(x0, θ) ≤ 0 for all

θ, and choose H such that Pr[x = x0] = α, thus satisfying the chance constraint regardless
of how we assign the remaining probability, 1 − α. Let {φk}k≥1 be any series such that
φk ↓ 0,

∑
k φk = 1− α, and ∑

k

φk

∫
θ

f(xk; θ)dF (θ)→∞.

(Could be φk = K∫
θ
f(xk;θ)dF (θ)

for the appropriate constant, K > 0.) Then, the objective

is unbounded though the chance constraint is satis�ed by the randomization of selecting
the one feasible solution α portion of the time.

A realistic application of this model is with a government prohibition constraint. Suppose a
chemical plant must limit the emissions of some toxic chemical, but it is not possible to have
zero emissions (except by shutting down the plant). The regulation could be stipulated in the
form of a chance constraint, and the plant could choose a randomized strategy to improve its
expected value, even though that is not what the government had in mind. (See LP Myth
14.)

SF Myth 3. Someone with constant risk aversion always selects the less risky of two invest-
ments.

This can fail for small wealth, as shown by Lippman, McCall, and Winston[12].

Counterexample. Let s be the wealth of an investor. There are two possible investments
with ri = random return for the i th investment. Letting V (s) denote the maximum
expected return for a wealth of s, the expected discounted return model is:

V (s) = max
i
{1−E[e−λ(s+ri)] + βE[V (s+ ri)]},

where β ∈ (0, 1) and λ is the constant risk aversion factor � that is, independent of the
wealth.

Assume wealth and returns are integer-valued, and that investment continues inde�nitely
unless the investor becomes bankrupt � that is, s = 0, in which case V (0) = 0 and the
process stops. Further, assume each investment produces either one positive return, ri, or
a loss of 1 with probabilities:

Pr[ri = ri] = pi > 0 and Pr[ri = −1] = 1− pi > 0.

Set the parameter values as follows:

λ = 1, β = 0.9, r1 = 2, r2 = 1, p1 = 0.5, p2 = 0.6.

Then, µ1 = 1.4268 and µ2 = 1.3080, so we have

V (s) = max
{

1− e−s1.4268 + 0.9 (0.5V (s+ 2) + 0.5V (s− 1)),
1− e−s1.3080 + 0.9 (0.6V (s+ 1) + 0.4V (s− 1))

}
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for s = 1, 2, . . .

Note that E[r1] = 0.5, Var[r1] = 5.625, E[r2] = 0.2, and Var[r2] = 0.544. Hence, invest-
ment 1 has both the greater expected return and the greater risk. Lippman et al. showed
that the investor chooses the risky investment when s = 1 � that is,

−e−11.4268 + 0.45V (3) > −e−11.3080 + 0.54V (2).

Thus, the optimality of risk aversion depends upon the level of wealth; it is possible for a
risk-averse investor to choose a risky investment for a low level of wealth. Lippman et al. note
that V is concave in their counterexample, so the counter-intuitive property is not due to any
lack of convexity structure. They also prove that the myth remains if we allow no investment
as a decision.

SF Myth 4. There is always a maximum likelihood estimator.

Wise and Hall[8] provide a counterexample such that the likelihood function is unbounded.

Counterexample. Let the density function be

f(x) =
1− ε
σ

h

(
x− µ
σ

)
+ ε h(x− µ),

where µ = mean, σ2 = variance, h(·) is the standard Gaussian density function, and ε is
a (�xed) value in (0, 1). We want to estimate (µ, σ2).

The likelihood function for independent samples {x1, . . . , xn} is

L(µ, σ2) =
n∏
i=1

[
1− ε
σ

h

(
xi − µ
σ

)
+ ε h(xi − µ)

]
.

This is lower-bounded by

L(µ, σ2) =
1− ε
σ

h

(
x1 − µ
σ

) n∏
i=2

ε h(xi − µ).

Consider µ = x1, so that h
(
x1−µ
σ

)
= h(0) > 0, independent of σ. LetK = h(0)

∏n
i=2 ε h(xi−

x1) > 0, so the likelihood function is unbounded:

lim sup
σ→ 0

L(x1, σ
2) = lim sup

σ→ 0

1− ε
σ

K =∞.

Thus, this distribution has no maximum likelihood estimator.

SF Myth 5. If demands for substitute products are pooled by a centralized system, the optimal
total inventory level cannot increase.

We have n products with random demands, D1, . . . , Dn. Optimal inventories for each (ignor-
ing the others) may use a simple model, such as the newsboy problem. Letting Fi denote the
cumulative distribution function of Di, its optimal inventory level is

F−1
i (R) = inf{d : R ≤ Fi(d)},
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where R = csi
csi+c

e
i
(called the newsboy ratio), csi = unit cost of shortage, and cei = unit cost of

excess.

Here we suppose the products could substitute for each other � that is, if there is a shortage in
one, some portion of consumers are willing to buy any other. Then, the inventory model pools
the inventories, and optimal levels depend upon various assumptions about the substitution.
Letting F denote the c.d.f. of the sum, D1 + · · · + Dn, the myth asserts that F−1(R) ≤∑n
i=1 F

−1
i (R).

Gerchak and Mossman[8] provide the following:

Counterexample. Let n = 2 and let F1 = F2 = F be the exponential distribution with
common parameter λ. Then, F is the exponential distribution with parameter 2λ. Thus,

F (d) = 1− e−λd and F(2d) = 1− e−4λd.

Here are some distribution values for λ = 1:

d F (d) F(d)
0 0.6321 0.3935
1 0.8647 0.6321
2 0.9502 0.7769
3 0.9807 0.8647

For cs = 4ce, the newsboy ratio is R = 0.8, which implies that the optimal level for each
product without any substitution is F−1(0.8) = 1, for a total inventory of 2. With full
substitution, the optimal (pooled) level is F−1(0.8) = 3. Hence, the pooled inventory is
greater than the total of the separate inventories, which violates the myth.

Another counterexample is with the Poisson distribution and λ = 1. This is perhaps more
realistic for a demand distribution, giving some skewness to the right and limiting the
demand to integer values. In this case, we have the following distribution values:

d F (d) F(d)
0 0.3679 0.1353
1 0.7358 0.4060
2 0.9197 0.6767
3 0.9810 0.8571

For cs = 2.5ce, the newsboy ratio is R = 0.7143, which implies that the optimal level
for each product without any substitution is F−1(0.7143) = 1, for a total inventory of 2.
With full substitution, the optimal (pooled) level is F−1(0.7143) = 3. Hence, the pooled
inventory is greater than the total of the separate inventories, which violates the myth.

In both cases we choose R to satisfy R < R < R. Equivalently, we have a range on the
cost ratio:

R

1−R
<
cs

ce
<

R

1−R
.

For the two cases, these ratios are:

Exponential: 3.482 =
0.7769

0.2231
<
cs

ce
<

0.8647

0.1353
= 6.391 (I chose 4.)

Poisson: 2.093 =
0.6767

0.3233
<
cs

ce
<

0.7358

0.2642
= 5.998. (I chose 2.5.)
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Yang and Schrage[19] establish a su�cient condition for the myth to be violated:

Suppose D1, . . . , Dn are i.i.d. with common cumulative distribution function, F , and
costs, cs, ce. Then, F−1(R) > nF−1(R) if there exists d such that

F (d) > F(nd) and F (d) ≥ R ≥ 0.5.

One can verify that the counterexamples satisfy this condition for the indicated range of cost
ratios.

Yang and Schrage provide more analysis of the full substitution model, identifying skewness of
the probability distribution as the key property that creates a counterexample. They extend
the model to include partial substitution, which limits the percentages of substitution for each
product.

SF Myth 6. If a team has the greatest win percentage before and after some speci�ed date,
it also has the greatest overall win percentage.

This is an instance of Simpson's Paradox, for which there is a vast literature. Cochran[4] used
the baseball players' strike of 1981 as the demarcating date, and he used Simpson's Paradox to
teach some elements of integer programming modeling, particularly the formation of objective
functions.

Counterexample. Consider the following win-loss records:

Pre-Strike Post-Strike Total

Team w ` w + ` w
w+`

w ` w + ` w
w+`

w ` w + ` w
w+`

A 17 18 35 0.4857 18 15 33 0.5455 35 33 68 0.5147
B 15 16 31 0.4839 19 16 35 0.5429 34 32 66 0.5152

(Teams A and B play other teams too.)

Team A stands above Team B in both the pre-strike and post-strike games, but Team B
stands above Team A overall.

See the Wikipedia entry at http://en.wikipedia.org/wiki/Simpson's_paradox for more examples
and further explanation.

SF Myth 7. In revenue management, it is always better to re-solve dynamic allocations than
use the planned allocations.

The key to this myth is the de�nitions of planned allocation and reallocation. Cooper[5]

provides the following:

Counterexample. Consider two fare classes in a �ight with one leg and two seats available.
Class 1 pays $1,000 and class 2 pays $200. The LP to plan allocations during the planning
horizon, [0, T ] time periods is:

max 10x1 + 2x2 : x1 + x2 ≤ 2, 0 ≤ x ≤ T.
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Assume demands, Di(t), for classes i = 1, 2, are independent Poisson processes, each with
rate 1. For T = 2, an optimal solution to the above LP is x∗ = (2, 0). This is the planned
solution: reserve 2 seats for class 1 and none for class 2.

The issue is whether to reallocate after one period, having had demand d = (d1, d2):

max 10y1 + 2y2 : y1 + y2 ≤ 2−
(

min{d1, x
∗
1}+ min{d2, x

∗
2}
)
, 0 ≤ y ≤ E[D(2)],

where E[D(2)] is the expected demand in period 2 for each class. Here are optimal re-
allocations for each possible value of d1 (the value of d2 is irrelevant since x∗2 = 0):

d1 y∗1 y∗2 Pr(D1(1) = d1)
0 1 1 0.3679
1 1 0 0.3679

≥ 2 0 0 0.2642

The expected revenue for this reallocation policy satis�es:

E[10 min{D2(1), 1}+ 2 min{D2(2)−D1(1), 1} |D1(1) = 0]

= 10 E[min{X, 1}] + 2 E[min{X, 1}] = 7.59

< E[10 min{D2(1), 2} |D1(1) = 0] = 10 E[min{X, 2}] = 8.96,

where X is a random variable with Poisson distribution having rate 1.

Therefore, the expected remaining revenue is less by reallocation than by staying with the
planned allocations, given the demand in the �rst period satis�es D1(1) = 0.

SF Myth 8. new Among no-memory rules to order list items, the move-to-front rule mini-
mizes the average cost.

The cost to access an item is its position in the list. For example, if the order does not change
and Pi is the probability that item i is requested, the average cost for accessing n items is∑n
i=1 i Pi. We assume that the probabilities are not known a priori. A no-memory rule is

one that does not use any information about the history of requests. (This includes relative
frequencies, so their probabilities cannot be estimated.) Rivest[13] introduced the move-to-
front rule: replace the requested item with the one at the front of the line. For example, if
the items are in their natural order, 1, 2, . . . , n, and there is a request for item m, the new
order is m, 1, 2 . . . ,m− 1,m+ 1, . . . , n. The myth asserts that this has the least average cost
among all no-memory rules. Rivest conjectured the myth using examples for some intuition.

Counterexample. Anderson, Nash, and Weber[1] provide the following. The request prob-
abilities for six items are P = (0.851, 0.146, 0.001, 0.001, 0.001). Consider the no-memory
rule de�ned by six permutations, where Πij is the position of the j th item after receiving
a request for the i th item.

Π =


1 2 3 4 5 6
1 2 3 4 5 6
2 3 1 4 5 6
1 2 4 3 5 6
1 2 3 5 4 6
3 4 1 2 6 5

 .
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For example, if the request is for item 1 or 2, the order does not change. If the request is
for item 3, the new order is 231456.

The average cost for the move-to-front rule is approximately 1.26, whereas the average cost
of this transposition rule is approximately 1.22. (Both calculations are done by forming
the associated Markov chain � see Rivest[13].) See Sleator and Tarjan[16] for insight as
to why the move-to-front rule is �approximately optimal� in practice.

SF Background � Data Envelopment Analysis

We are given features of each Decision-Making Unit (DMU), which we partition into inputs,
denoted I, and outputs, denoted O. The production possibility set, P , is the convex hull of
{(Ik, Ok)}, and we wish to evaluate the k th DMU using the features of the others. There are
several ways to approach this.

Assume, for our limited purposes here, that (Ik, Ok) is in the interior of the convex hull. Let
c denote the cost vector associated with the DMUs, and our goal is to compare ck with the
other DMUs. To do so, we solve the cost-comparison LP:

min
∑
i 6=k

cixi : x ∈ Fk(Ik, Ok), (SF.11)

where

Fk(Ik, Ok) = {x : x ≥ 0,
∑
i 6=k xi = 1,

∑
i 6=k Iixi ≤ Ik,

∑
i 6=k Oixi ≥ Ok}.

In words, we �nd a point in the production possibility set such that each of its inputs does
not exceed the input for the k th DMU, and each of its outputs is at least as great as that of
the k th DMU. We �nd the least costly point and compare that with ck to evaluate how well
the k th DMU performs.

Two other LPs are used to evaluate a DMU:

Input-oriented: min θ : x ∈ Ck(θIk, Ok) (SF.12)

Output-oriented: max θ : x ∈ Ck(Ik, θOk), (SF.13)

where Ck is the set of conical combinations of DMU features, except the k th DMU:

Ck(Ik, Ok) = {x : x ≥ 0,
∑
i 6=k Iixi ≤ Ik,

∑
i 6=k Oixi ≥ Ok}.

The Input-oriented LP asks for the minimum proportionate input for which the output could
be satis�ed. The Output-oriented LP asks for the maximum proportionate output within the
input limit. (See Cooper, Gu, and Li[6] for alternative DEA models.)

Consider the Input-oriented model with Ok > 0 (so x = 0 is not feasible). Let θ∗ be the
minimum proportionate change with optimal weight set X∗ for (SF.12). The return to scale
exhibited by the k th DMU is classi�ed by the total of the solution weights in X∗:

Constant return to scale (CRS):
∑
i x
∗
i = 1 for some x∗ ∈ X∗;

Decreasing return to scale (DRS):
∑
i x
∗
i > 1 for all x∗ ∈ X∗;

Increasing return to scale (IRS):
∑
i x
∗
i < 1 for all x∗ ∈ X∗.
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For example, an increasing return to scale means that the same output requirements can
be satis�ed with proportionally less input from the k th DMU. The maximum total weight,
among the optima that yield θ∗, is given by:

σ−1 = max
x∈X∗

{∑
i 6=k xk

}
. (SF.14)

(See Seiford and Zhu[14] for details and additional models.)

DEA Pitfalls and Protocols

Dyson et al.[7] describe pitfalls to avoid in using DEA. Here are some examples:

Homogeneity. Use clustering, if necessary, to have the DMUs comparable. For example, do
not compare a science department with a language department.

Correlation. Reduce features to be as uncorrelated as possible. For example, if sta� size is
one input, total sta� budget is correlated, so they should not be used as though they
are two independent inputs.

Feature measurement. The inputs and outputs may be subject to measurement errors,
and some may be qualitative. Several approaches have been considered (cited by Dyson
et al.).

Linearity. The DEA models assume that we can represent a feature by taking a (non-
negative) linear combination of the features of the DMUs.

Weight restrictions. There may be restrictions, such as simple bounds, x ≤ x ≤ x. These
may depend upon the DMUs in the database. Removing or adding a DMU could change
the weights, the manner of which needs explanation.

They provide further discussions and numerical examples.

SF Myth 9. new A DMU that exhibits increasing return to scale continues to do so up to a
proportional increase of all outputs equal to α ∈ [1, σ).

This is one of the results by Seiford and Zhu[14] (also see [15] for further discussions and
placing such errors in context).

Counterexample. Jahanshahloo, Lofti, and Zohrehbandian[11] provide the following:
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DMU
1 2 3 4 5 6 7

Input 2 3 6 12 24 24 9
Output 1 1 6 12 22 23 8

Let k = 2, so the Input-oriented LP is:

min θ : x ≥ 0
2x1 + 6x3 + 12x4 + 24x5 + 24x6 + 9x7 ≤ 3 θ
x1 + 6x3 + 12x4 + 22x5 + 23x6 + 8x7 ≥ 1.

An optimal solution is θ∗ = 1
3
with x∗ = (0, ·, 0.0911, 0.0378, 0, 0, 0). This means that

DMU2 can produce its output with a combination of inputs from DMU3 and DMU4 that
use only 1

3
of the DMU2 input. That combination sums to less than one, so DMU2 exhibits

an increasing return to scale.

Using (SF.14)[14], σ = 6, so the myth asserts that the IRS remains in e�ect if the output
is increased to αO for α ∈ [1, σ). However, for α = 5 < 6, we get (I2, O2) = (3, 5) 6∈ P .
Thus, (3, 5) does not exhibit IRS because it is not in the production possibility set.

SF Myth 10. new When using LP for DEA, it does not matter if you obtain a basic or
interior optimum.

Given a solution, x∗, to (SF.11) the associated peer group is σ(x∗) = {i : xi > 0}. If there are
alternative optima, di�erent peer groups can be generated, depending upon which solution is
obtained. That raises the issue stated in the myth, given by Greenberg[10].

Any interior solution gives the union of all peer groups. Let x0 denote an interior solution,
and let {x`}` = 1L denote the basic solutions. Then,

σ(x0) =
L
∪
`=1

σ(x`).

Because of the potential sensitivity of the evaluation process to the choice of peer group, the
interior solution better serves the interests of full disclosure. If only one peer group is used in
the evaluation, one may question whether another peer group should have been used.

Counterexample.
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Consider just one input and one output, so the fea-
ture space is in the plane. There are �ve DMUs in
the database, and we are evaluating number 5, illus-
trated on the right.

Let the cost vector be c = (8, 6, 5, 7), so the LP is:

min 8x1 + 6x2 + 5x3 + 7x4 : x ≥ 0
x1 + x2 + x3 + x4 = 1

10x1 + 10x2 + 110x3 + 110x4 ≤ 55
10x1 + 110x2 + 110x3 + 10x4 ≥ 20

There are two optimal basic solutions: x1 = (0.45, 0.10, 0, 0.45) and x2 = (0.55, 0, 0.10, 0.35),
with associated peer groups {1, 2, 4} and {1, 3, 4}.

Basic Solution x1 Basic Solution x2

An interior solution is x0 = (0.5, .05, 0.05, 0.4) with peer group σ(x0) = {1, 2, 3, 4}.

One may note, from the example, that the interior solution by itself does not provide all of
the useful information. In particular, DMUs 1 and 4 must be in the peer group, whereas the
third member could be either DMU 2 or 3 to form a basic feasible solution. Thus, the essential
inclusion of DMUs 1 and 4 is lost if only one solution is obtained, regardless of whether it is
basic or interior.

The bottom line is that the interior solution is preferred. Its peer group better �ts the need
for disclosure, and with a modest amount of additional computation, each essential member
of the peer group can be identi�ed (that is, �x xi = 0 for each i ∈ σ(x0); i is essential if the
LP becomes infeasible).

SF Myth 11. newWhen entering a parallel queueing system, it is optimal to join the shortest
queue.
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Assume the arrivals into the system follow a Poisson process, with rate λ. Each new arrival
knows the queue lengths and must decide which queue to join to minimize expected time in
the system.

One reason this myth is not true is that �shortest� need not be the least wait time. For
example, in a supermarket checkout line people have di�erent amounts of groceries. Let
us assume, however, that our queueing system serves indistinguishable customers. (Each
customer may be in one of several classes, requiring di�erent service times, but the new
arrival cannot determine to which class each customer belongs.)

Counterexample. Whitt[17] provides the following: Let there be two queues with inde-
pendent service times. Let the common service-time distribution be given by the mass
function:

Pr(t = τ) = 1− ε and Pr(t = 2) = ε,

where 0 ≤ τ � ε � 1. We may consider this to be a 2-class population, but unlike the
supermarket example, an arrival cannot determine the other customers' class. An example
is a bank (with separate lines) such that a customer may have a very quick transaction,
like a deposit, or may require a lot of time, like complicated transfers.

De�ne the system state (s1, s2) = queue sizes. The shortest-queue rule is optimal for
states: (1) s1 = 0 or s2 = 0, and (2) |s1− s2| ≤ 1. However, if s1, s2 > 0 and |s1− s2| ≥ 2,
Whitt proves that it is optimal to join the longer queue for τ, ε su�ciently small.
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